DArk Matter Particle Explorer (DAMPE)

Li, Xiang Purple Mountain Observatory, CAS Nanjing, China

> xiangli@pmo.ac.cn xiangli.1988.cn@gmail.com

> > on behalf of DAMPE team

DM indirect detection

We need new accurate and very-highstatistics observation for searching **Dark Matter in the sub-TeV to the** trans-TeV region with a detector which has large exposure, high energy resolution, high space resolution and low background.

NEWS & ANALYSIS

Science, 20 May, 2011

SPACE SCIENCE

Chinese Academy Takes Space Under Its Wing

LOFTY AMBITIONS

Mission	Chief scientist	Goals	Estimated launch
нхмт	Li Tipei, CAS Institute of High Energy Physics and Tsinghua University	Survey of x-ray sources; detailed observations of known objects	2014
Shijian-10	Hu Wenrui, CAS Institute of Mechanics	Study physical and biological systems in microgravity and strong radiation environment	Early 2015
KuaFu Project	William Liu, Canadian Space Agency and CAS Center for Space Science and Applied Research	Study solar influence on space weather	Mid-2015
Dark Matter Satellite	Chang Jin, CAS Purple Mountain Observatory	Search for dark matter; study cosmic ray acceleration	Late 2015
Quantum Science Satellite	Pan Jianwei, University of Science and Technology of China	Quantum key distribution for secure communication; long- distance quantum entanolement	2016

Strategic Priority Research Program in Space Science

Dark Matter Particle Explorer Satellite

Purple Mountain Observatory (PMO), CAS, Nanjing University of Science and Technology of China (USTC), Hefei Institute of Modern Physics (IMP), CAS, Lanzhou Institute of High Energy Physics (IHEP), CAS, Beijing National Space Science Center, CAS, Beijing DPNC, University of Geneva, Geneva INFN Perugia

Scientific Objectives

Cosmic ray

- Gamma-ray astronomy
- Dark matter particle

Energy range: 1GeV-10 TeV Particle: electron, gamma-ray, heavy ions Energy resolution: (1.5%@800GeV) **Space resolution: (0.5degree@800GeV)** Background level (<1%@800GeV) e/p separation: 10⁵⁻⁶ GF: 0.3m².sr

The detector is consisted of 4 parts:

Top plastic scintillators (charge measurement) Si tracker (6 layers) BGO calorimeter Neutron detector

Top hodoscope array

- □ Charge measurement (From Z=1 to Z=28) $_{\circ}$
- □ Anticoincidence (for gamma-ray observation)
- □ Cross section: 2.5cm×1cm Length: 82cm
- □ Readout: PMT (two dynodes)+VA chip

Charge resolution:25%@Z=1 Detection eff. >99%

Weight: 95Kg Size: $1.18 \times 0.89 \times 0.12m$ Power consumption: 50W

Si tracker

- □ 6 layers, 76cmX76cm
- Integrated Tungsten converter plates into a tracker with Si strip detectors
- \Box γ converts in W plate to e⁺e⁻ \rightarrow detected in subsequent Si detectors
- Unambiguous identification of γ -ray , superior pointing resolution
- 3 converter layers, total 67 kg of W, thickness 1x1 mm + 2x2 mm = 1.43 X₀
- □ A tracking plane is made of 2x8 ladders head to head
- 7 tray of 4 types: no-W thin tray, no-W thick tray, thin-W tray, thick-W tray
- Support of thin tray ~ 15 mm, Support of thick tray ~ 30 mm

BGO calorimeter

Energy measurement from GeV-100 TeV e/P seperation 10⁴ (31.25 X₀) 308 crystals (2.5cmX2.5cmX60cm) Readout: PMT from both sides each PMT: 3 dynodes + VA

PMT readout

BGO dynamic range test

Using one readout: Dynamic range 200,000 2 end readout: 2,000,000

Neutron Detector

- □ Using time window, neutron detector for e/P seperation.
- □ BC454 (5% B, size 600mm×600mm×10mm)
- Read out: PMT
- □ Simulation: >10-100 e/P seperation

deposit in Neutron detector

500GeV energy deposit in BGO for electron (yellow) and proton (red)

High energy Resolution

DAMPE Mission

- Approved for construction (phase C/D) in Dec. 2011
- Scheduled launch date 2015
 - Satellite < 1900 kg, payload ~1340kg
 - Power consumption 840W
 - Lifetime > 3 years
 - Launched by CZ-2D rockets

- Inclination 97.4065°
- Period 90 minutes
- sun-synchronous orbit

Test for structrue of whole detector

2013-02-27

Comparison of Detector Performance for Electrons

A MPE is optimized for the electron observation in the trans-TeV region, and the erformance is best also in 10-1000 GeV.

Detector	Energy Range	Energy	e/p Selection	Key Instrument	SΩT
	(GeV)	Resolution	Power	(Thickness of CAL)	(m²srday)
ATIC1+2	10 -	<3% ~10,000 Thick Seg. CAL		Thick Seg. CAL	3.08
(+ ATIC4)	a few 1000	(>100 GeV)		(BGO: 22 X ₀)	
				+ C Targets	
PAMELA 1-700		5%	105	Magnet+IMC	~1.4
		@200 GeV		(W:16 X ₀)	(2 years)
FERMI-LAT	20-1,000	5-20 %	10³-10⁴	Tracker+ACD	60@TeV
		(20-1000	(20-1000GeV)	+ Thin Seg. CAL	(1 year)
		GeV)	Energy dep. GF	(W:1.5X ₀ +CsI:8.6X ₀)	
AMS	1-1,000	~2-4%	104	Magnet+IMC	~50(?)
	(Due to	@100 GeV	(x 10 ² by TRD)	+TRD+RICH	(1year)
	Magnet)			(Lead: 17X _o)	
CALET	1-10,000	~2-3%	~10 ⁵	IMC+CAL	44
		(>100 GeV)		$(W: 3 X_{o} + PWO : 27 X_{o})$	(1years)
DAMPE	1-10,000	~1%	~ 10 ⁵ −10 ⁶	IMC+CAL+Neutron	180
		(>100 GeV)		(W: 2 X ₀ + BGO: 32 X ₀)	(1 years)

More detailed and accurate description about DAMPE is to be represented in the 33rd International Cosmic Ray Conference (ICRC2013) next month by our technical experts.

High energy resolution for line searching

Region	E_0	Fermi-LAT			DAMPE		
	GeV	$N_{\rm sig}/N_{\rm bkg}$	significance	$t(5\sigma)$	$N_{ m sig}/N_{ m bkg}{}^a$	$\operatorname{significance}^a$	$t(5\sigma)^b$
Weniger Reg3	126.2	24.2/52.5	3.3	8.6	24.2/8.8	8.2	2.8
Central	130.4	17.1/13.5	4.7	4.2	17.1/2.2	11.4	1.4
West	129.8	11.8/12.0	3.4	8.1	11.8/2.0	8.4	2.6

^aAssuming the same exposure of Fermi-LAT and DAMPE; ^bThe geometry factor of DAMPE is adopted to be half of that of Fermi-LAT.

Li & Yuan (2012, Phys. Lett. B, 715, 35)

Thanks for your attention !