Data Analysis Tools

Matt Graham HPS Software Workshop June 3, 2013

Outline

- Tools for java: aida & JAS
 - good for low- & mid-level analysis...algorithm development, debugging
 - can do higher level analysis with these tools, but ROOT people will feel unsatisfied
- Tools in ROOT: TMVA & RooFit
 - MVA training/testing
 - high-level analysis & cuts
 - maximum likelihood fits

Analysis classes in hps-java

- Most of the analysis (such as it is) has been done directly in hps-java
 - There are a ton of examples living in the package
- Extremely useful to have a tool to plug directly into java code ... makes debugging much easier
 - AIDA + IPlotter works very well for this

Example: using aida & IPlotter

org.lcsim.hps.users.mgraham.ExamplePlotter.java

Initialization (in "detectorChanged")

```
protected void detectorChanged(Detector detector) {
Ξ
          aida.tree().cd("/");
          plotterFrame = new AIDAFrame();
          plotterFrame.setTitle("HPS Tracking Plots");
          plotter = fac.createPlotterFactory().create("HPS Tracking Plots");
          plotter.setTitle("Momentum");
          IPlotterStyle style = plotter.style();
                                                                           Make your plots pretty
          style.dataStyle().fillStyle().setColor("yellow");
          style.dataStyle().errorBarStyle().setVisible(false);
          plotter.createRegions(2, 3);
          plotterFrame.addPlotter(plotter);
          IHistogram1D trkPx = aida.histogram1D("Track Momentum (Px)", 25, -0.25, 0.25);
          IHistogram1D trkPy = aida.histogram1D("Track Momentum (Py)", 25, -0.1, 0.1);
                                                                                       Initialize plots
          IHistogram1D trkPz = aida.histogram1D("Track Momentum (Pz)", 25, 0, 3.5);
          IHistogram1D trkChi2 = aida.histogram1D("Track Chi2", 25, 0, 25.0);
          IHistogram1D xAtConvert = aida.histogram1D("X (mm) @ Converter", 50, -50, 50);
          IHistogram1D yAtConvert = aida.histogram1D("Y (mm) @ Converter", 50, -20, 20);
          plotter.region(0).plot(trkPx);
          plotter.region(1).plot(trkPy);
          plotter.region(2).plot(trkPz);
                                                   Assign plots to places in the plotter
          plotter.region(3).plot(trkChi2);
          plotter.region(4).plot(xAtConvert);
          plotter.region(5).plot(yAtConvert);
          plotterFrame.pack();
          plotterFrame.setVisible(true);
      3
```

Fill some histograms & end of data

aida data containers

- 1d, 2d, profile histograms
- 1d, 2d clouds:
 - warning...in JAS (at least) there is a limit to the number of data points before cloud→histogram (with binning you probably don't want)
- "ituples"; aida's version of an ntuple

aida & JAS & lcio

• JAS is a nice tool for looking at lcio files, running hps-java classes, and (potentially) looking at events via the WIRED event display

DataSets	Welcome × LCSim Event ×			
Run:1351 Ev	ent: 1			
Event APrimeBeamspotCons APrimeTargetConstrained APrimeUnconstrained ConfirmedMCParticles EcalCalHits EcalClusters	BeamspotConstrained TargetConstrained Unconstrained nedMCParticles IHits usters adoutHits	LCIO Event Header 1351 Run 1351 Event 1 Time Stamp Fri May 18 03:09:22 EDT 2012 Detector Name HPS-TestRun-v3 Event Weight 1.0 IDRUP 0 SUC Version Geant4 Version		EDT 2012
FPGAD	FPGAData	Collections		
FinalSta Helical Helical Matche Rotate Rotate SVTFitt SVTRa SVTRa SVTSha Seeded StripCi	ateParticles TrackHitRelations TrackHits TrackMCRelations edTracks dHelicalTrackHitRelations dHelicalTrackHits dHelicalTrackHits dHelicalTrackHits dHelicalTrackHits dHelicalTrackHits dHelicalTrackHits dHelicalTrackerHits seeRawTrackerHits wTrackerHits apeFitParameters dMCParticles usterer_SiTrackerHitStrip1D rBank	▼ Name APrimeBeamspotConstrained APrimeTargetConstrained APrimeUnconstrained ConfirmedMCParticles EcalCalHits EcalClusters EcalReadoutHits FPGAData FinalStateParticles HelicalTrackHitRelations HelicalTrackHits HelicalTrackHits HelicalTrackMCRelations MatchedTracks RotatedHelicalTrackHitRelations RotatedHelicalTrackHits RotatedHelicalTrackHits RotatedHelicalTrackHits SVTFlittedRawTrackerHits SVTShapeFitParameters	Type org.lcsim.event.ReconstructedParticle org.lcsim.event.ReconstructedParticle org.lcsim.event.ReconstructedParticle org.lcsim.event.ReconstructedParticle org.lcsim.event.CalorimeterHit org.lcsim.event.Cluster org.lcsim.event.Cluster org.lcsim.event.RawCalorimeterHit org.lcsim.event.Cluster org.lcsim.event.Cluster org.lcsim.event.Cluster org.lcsim.event.Cluster org.lcsim.event.Cluster org.lcsim.event.Cluster org.lcsim.event.Cluster org.lcsim.event.Cluster org.lcsim.event.Cluster org.lcsim.event.Cluster org.lcsim.event.LCRelation org.lcsim.event.LCRelation org.lcsim.event.LCRelation org.lcsim.event.LCRelation org.lcsim.event.LCRelation org.lcsim.event.LCRelation org.lcsim.event.LCRelation org.lcsim.event.LCRelation	Size

1 events processed in 1 seconds

JAS & Wired Event Display

http://wired.freehep.org/

WIRED 4 supports viewing of events using either conventional 3D projections as well as specialized projections such as a fish-eye or a rho-Z projection. Projections allow the user to scale, rotate, position or change parameters on the plot as he wishes. All interactions are handled as separate edits which can be undone and/or redone, so the user can try things out and easily return to a previous state.

Not our data (thanks Zeus)

lcio or DSTs & ROOT

- Omar has a very nice DST builder...two things come out from this:
 - Really nice example of how to access lcio data in c++ ... this is how you can access the data directly and interface with ROOT
 - Products of running the default DST code are ROOT Trees, so you can just look at these directly
- Everyone knows ROOT...I'll just introduce two neat packages: TMVA & RooFit

Signal, Background & Cuts

- One of the first steps of analysis is determining what variables to cut on and where to place the cut
- Some cuts are easy...if it removes 90% of bkg and keeps 90% of signal, do it. If it's 50/50%, probably don't.
 - mass-dependent & vertex-dependent variables are bad to cut on...don't want to distort these distributions (they will be used eventually)
- But, lot of variables have some discriminating power...or there may be some correlations between variables that can be useful for discrimination
 - plain rectangular cuts may not be optimal...optimizing can be painful.

Example from BaBar: Event Shape

12

TMVA: T MultiVariateAnalyzer

- <u>http://tmva.sourceforge.net/</u>
- Comes standard with ROOT (>5.11)
- Very easy to use; website has good tutorial & user guide...fairy good description of methods
 - Uses standard ROOT objects (e.g. TTrees)
- includes: rectangular cut optimization, NN, BDT, linear dicriminants, SVM (support vector machine...which I just heard of yesterday from Pelle), and other MVAs
- Three steps to making any MVA: Training, testing, evaluation
 - Training: you give a dataset(s) with specified signal/bkg/etc; the MVA optimizes based on these classifications
 - Testing: on a different data set, apply the trained MVA; the discrimination should be roughly the same as in the training sample (otherwise you may have "overtrained")
 - Evaluation: apply the MVA to regular data (where you don't know what signal and background)

Rejection vs Efficiency

Maximum Likelihoods

- Performing fits to data in ROOT is awkward
 - beyond fitting 1d binned histograms with fairly simple functions, it's just really complicated
- Use RooFit instead!
 - comes with ROOT (but you need to add a flag at build time)
- <u>http://roofit.sourceforge.net/</u>
 - developed by BaBarians!
 - Fit binned or unbinned data sets
 - $1 \rightarrow lots$ number of dependent variables
 - $1 \rightarrow lots$ number of parameters
 - many common PDFs come included (gaussian, exponential, histogram PDFs, lots more)
 - RooAddPdf, RooProdPdf, RooFFTConvPdf, RooSimultaneous
 - "easy" to build your own very complicated pdfs
 - ML (extended or not) or chi^2 fits supported (uses Minuit)
- $B^0 \rightarrow \pi^+ \pi^- \pi^0$: 7-dimensional (time-, tag-dependent dalitz plot, with mES, deltaE, event shape) PDF (with weird correlations) with 7 tagging categories, 25 event species, and 64 free parameters...

simpleRooFitFit

void simpleRooFitFit(){

}

RooRealVar myVar("myVar", "myVar", -2000,2000);

RooRealVar mean("mean", "mean", 666,0,1000); RooRealVar sigma("sigma", "sigma", 999,500,1500); RooGaussian myGaussian("myGuass", "This is my Gaussian", myVar, mean, sigma);

```
RooDataSet* gaussianSet=myGaussian.generate(RooArgSet(myVar),666);
gaussianSet->Print("V");
```

myGaussian->fitTo(*gaussianSet);

Make a PDF, generate toy events, fit toy data set

...done

root [3] .x simpleRooFitFit.cc DataStore myGuassData (Generated From This is my Gaussian) Contains 666 entries Observables: myVar = 229.671 L(-2000 - 2000) "myVar" Warning: wrong member access operator '->' simpleRooFitFit.cc:12: [#1] INFO:Minization -- RooMinuit::optimizeConst: activating const optimization ******** 13 **MIGRAD 1000 1 skak ******** FIRST CALL TO USER FUNCTION AT NEW START POINT, WITH IFLAG=4. START MIGRAD MINIMIZATION. STRATEGY 1. CONVERGENCE WHEN EDM .LT. 1.00e-03 FCN=5382.43 FROM MIGRAD STATUS=INITIATE 6 CALLS 7 TOTAL EDM= unknown STRATEGY= 1 NO ERROR MATRIX EXT PARAMETER CURRENT GUESS STEP FIRST VALUE SIZE NO. NAME ERROR DERIVATIVE 6.66000e+02 1.00000e+02 2.14287e-01 -6.72918e+00 1 mean 9.99000e+02 1.00000e+02 2.01358e-01 4.75289e+00 2 sigma ERR DEF= 0.5 MIGRAD MINIMIZATION HAS CONVERGED. MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN=5382.21 FROM MIGRAD 37 CALLS 38 TOTAL STATUS=CONVERGED EDM=1.04221e-07 STRATEGY= 1 ERROR MATRIX ACCURATE EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 mean 6.95938e+02 5.59226e+01 5.11496e-03 -2.88818e-03 4.65923e+01 3.92250e-03 6.30275e-04 2 sigma 9.97712e+02 ERR DEF= 0.5 EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5 3.143e+03 1.461e+03 1.461e+03 2.177e+03 PARAMETER CORRELATION COEFFICIENTS NO. GLOBAL 1 2 1 0.55861 1.000 0.559 2 0.55861 0.559 1.000

Doing a ML Analysis

- We'll use a ML fit to extract our signal (if I have my way)...here are the basic blocks.
- Define PDF...
 - define variables...mass, vertex position, (event prob?), etc
 - how many species...signal, BH bkg, rad bkg, ...???
 - what shapes for each species in each variable...where do you take the parameters from
- Validate PDF
 - generate & fit toy MC \rightarrow normalization, parameter sensitivity, etc
 - fit "embedded" samples→mixture of real MC, toy MC, appropriate data subsample etc...tests if the PDFs used are appropriate, variable correlation treatment.
- Blind fits to data→anything catastrophic? Iterate from beginning if needed
- Final fit to data \rightarrow write PRL; accept Nobel Prize.