

Chuck Dermer Naval Research Laboratory, Washington, DC charles.dermer@nrl.navy.mil

Andy Strong

Max-Planck-Institut für extraterrestrische Physik, Garching, Germany aws@mpe.mpg.de

&

T. Kamae, M. N. Mazziotta, E. Orlando, F. Stecker, L. Tibaldo

Goal: Determine the local interstellar cosmic-ray spectrum

Direct detection \geq 10 GeV/nuc; γ -ray detection \geq 400 MeV/nuc

<u>Outline</u>

- 1. Fermi-LAT emissivity measurements
- 2. Uncertainties in nuclear production cross sections
- 3. Shock-acceleration spectrum: power-law in momentum
- 4. Fits to emissivity spectrum \Rightarrow cosmic-ray spectrum
- 5. Deviations from momentum power-law
- 6. Implications for the theory of cosmic-ray origin

Fermi LAT Emissivity Measurements

Abdo et al., Ap J, 703, 1249, 2009

Residual 100 MeV - 10 GeV γ -ray intensity exhibits linear correlation with N(HI) Measured integral γ -ray emissivity: (1.63±0.05)×10⁻²⁶ ph(>100 MeV) s⁻¹sr⁻¹ H–atom⁻¹ with an additional systematic error of ~10%.

3 Year Fermi-LAT Emissivity Spectrum

Template mapping, after subtracting point and extended sources and isotropic emission Dispersion correction at low energies

How to explain the spectrum? Cosmic rays colliding with gas in the Galaxy $p + p, p + \alpha, etc. \rightarrow \gamma + X$, dominated by $\pi^{\circ} \rightarrow 2\gamma$ cosmic-ray electron bremsstrahlung

• Molecular Clouds as GCR Detectors

High Galactic latitude Gould Belt Clouds August 4, 2008 – July 15, 2011, P6_v11 Subtract point sources from 2 yr catalog

- Flux ~ M/D² as inferred from CO maps
- Perform spectral analysis

- Molecular Cloud Spectra Consistent
 "Passive" Cosmic-ray Detectors
- Break in Photon Spectrum at ~2 GeV
- Invert for ISM CR spectrum

Neronov, Semikoz, & Taylor (2012)

Uncertainties in Nuclear Production Physics

- $p+p \rightarrow \gamma + X \pmod{p+p} \rightarrow \pi^0 \rightarrow 2\gamma$
- **Isobar + Scaling Model**

Fireball /Fermi (1950) Statistical Theory Resonance Baryon Excitation (Stecker 1968) Feynman Scaling (Stephens & Badhwar 1981; Blattnig et al. 2000)

Hybrid Model (Dermer 1986)

- **Diffractive Effects + Scaling Violations**
- 1. ∆(1236) 2. N(1600) 3. Diffractive
- 4. Non-diffractive/scaling (Kamae et al. 2005, 2006)
- Monte Carlo Event Generators Kamae et al. (PYTHIA); Huang et al. (2007: DPMJET-III); Kelner et al. (2006; SIBYLL); Kachelriess & Ostapchenko (2012: QGSJET-II); FLUKA

Comparison of Different Models: 30% uncertainty at E_{γ} < 100 MeV and <10-15% uncertainty at E_v > 1 GeV

Cross Section Enhancement

p+ α , α +p α + α , p+C, ...; nuclear enhancement factor k = 1.45 − 1.84 (≈ 1.8-2.0 Mori 1997, 2009) But...spectral differences

Measured Cosmic-Ray Spectrum

Naïve Theoretical Expectations: 1st order Fermi shock spectrum

- Test particle limit
- Strong shock

$$\frac{d\dot{N}}{dp} \propto p^{-s_{inj}}, s_{inj} = 2.2 - 2.3$$

Steepening due to escape

 $t_{esc} \propto p^{\delta}, \delta \approx 0.5$ $\frac{dN}{dp} \propto \frac{d\dot{N}}{dp} t_{esc} \propto p^{-s}, \ s = s_{inj} + \delta$ $\therefore j(T_p) \propto \beta \frac{dN}{dT_p} \propto \frac{dN}{dp} \propto p(T_p)^{-s}$

Power-law momentum spectrum makes break in kinetic energy representation

Search for deviations from cosmic ray flux given by power-law in momentum

Dermer

Fits to *γ***-ray Emissivity**

Protons only; ions treated through nuclear enhancement factor k

$$j(T_p) = 2.2 p^{-2.75} (\text{cm}^2\text{-s-sr-GeV})^{-1}$$

Gives adequate fit to data within uncertainties of nuclear physics

Dermer (2012)

Fits to *γ***-ray Emissivity**

Protons only; ions treated through nuclear enhancement factor k

$$j(T_p) = 2.2 p^{-2.75} (\text{cm}^2\text{-s-sr-GeV})^{-2.75}$$

Gives adequate fit to data within uncertainties of nuclear physics

But exceeds CR flux between 10 GeV and 4 TeV (black solid curve)

E(MeV)

Fits to γ**-ray Emissivity**

Protons only; ions treated through nuclear enhancement factor k

$$j(T_p) = 2.2 p^{-2.75} (\text{cm}^2\text{-s-sr-GeV})^{-1}$$

Gives adequate fit to data within uncertainties of nuclear physics

Exceeds CR flux between 10 GeV and 4 TeV (black solid curve)

Photon Spectrum

Fit to CR proton flux above 10 GeV (purple dashed curve), shock spectrum below

Underproduces γ -ray emissivity

But,....no electron emissions

Fermi Symposium, Monterey

• Derive *ambient* spectrum using Fermi-LAT electron spectrum above 7 GeV, and synchrotron spectrum at lower energies

• Synchrotron energy index = 0.4 - 0.6below a few GHz \Rightarrow electron index = 1.8 - 2.2 below a few GeV

• Compare with GALPROP propagation model at lower energies using parameters from GALPROP modeling of CR secondary to primary nuclei

 Injection cannot be too hard (1.3 – 1.6), or underproduce directly measured electrons

For more details, see poster: *Diffuse radio emission from the Galaxy, Implication for cosmic rays and magnetic fields*, Orlando & Strong Injection index = 1.6 below 4 GeV

Injection index = 1.6 below 4 GeV

• Require break in electron injection spectrum from ~1.6 to 2.5 at ~4 GeV to fit synchrotron, so hard injection spectra

• Implies less Solar modulation than usually assumed

Alternate approach of Casandjian: derive proton and helium spectra from emissivity, heliospheric fluxes using Solar modulation model, and synchrotron

Strong, Orlando, & Jaffe (2011)

Bayesian Model Analysis

- 1. Explicit scan of model parameters
- 2. Spectra using posterior averaging
- 3. No use made of modulation approximations
- 4. Base models on momentum spectra n(p)
- 5. Express problem in matrix form

 $q(E) = M_{H}(E,p) n_{H}(p) + M_{L}(E,p) n_{L}(p)$

q(E) = emissivity E = gamma-ray energy p = momentum $n_{H}(p) = proton, Helium spectrum$ $n_{L}(p) = electron + positron spectrum$ $M_{H} = Hadronic production matrix$ $M_{I} = Leptonic production matrix$ Free parameters in the most general case:

protons:

- 1. proton break momentum
- 2. proton index g_{p1} below break
- 3. proton index g_{p2} above break
- 4. proton normalization

electrons:

- 5. electron break momentum
- 6. electron index g_{e1} below break (constrained by synchrotron)

Fix electron index above break and normalization to Fermi > 20 GeV electron spectrum.

Cross sections (1) Kamae et al. (2006) at low energies; Kachelriess & Ostapchenko (2012) > 20 GeV

Model: Hadronic (red), bremsstrahlung (green).

Total (yellow, with one standard deviation range).

(Right) Cosmic-ray proton momentum spectrum derived from emissivity.

Displayed as a power-law in momentum, with low-energy break.

Analysis includes bremsstrahlung contribution and synchrotron constraints on electrons. One standard deviation range.

Dashed red (green) curve is PAMELA (BESS-TeV) cosmic-ray proton data Note agreement (within ~26%) at high energies and modulation at low energies.

Cross sections (2) Dermer (1986): Stecker isobar model at low energies; Stephens & Badhwar at high energies

- Derive local interstellar cosmic-ray proton spectrum solely from γ-ray emissivity measured by Fermi-LAT, synchrotron, and Fermi electron spectrum
- Requires knowledge of cosmic-ray electron spectrum and nuclear cross sections
- Simplest spectral model is power-law in momentum; good fit to emissivity with s=2.75, but implies CR spectrum larger than observed at >10 GeV, also neglects electron bremsstrahlung
- Low-energy break in proton spectrum at ~6 GeV, also found in approach by Casandjian, consistent with injection momentum power-law modified by propagation, as expected from path length distribution inferred from B/C ratio
- Cosmic ray spectrum implied by γ-ray emissivity in accord with origin of cosmic rays by acceleration at supernova remnant shocks
- Gamma-ray observations demonstrate absolute level of Solar modulation on interstellar cosmic-ray spectrum

Range of uncertainties in production cross sections are examined in Fermi-LAT paper in preparation (Strong et al., 2013) to assess reality of features in cosmic-ray proton spectrum