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Abstract—PingER (Ping End-to-end Reporting) is a worldwide
end-to-end Internet performance measurement framework
running for the last 20 years and led by the SLAC National
Accelerator Laboratory USA. The objective of the project is to
monitor the performance of the Internet links around the world
using the ubiquitous ping facility. Currently, the framework
comprises of about 50 active Monitoring Agents (MAs) in 20
countries of the world. These MAs probe 700 remote sites
located in 170 countries of the world. They are covering an
area containing over 98 % of the world’s population. Currently,
the size of the PingER data is about 60 GB stored in 100,000 flat
files with a compression ratio of 5:1. The data is of an historical
nature and very useful for fine-grained Internet performance
analysis. However, the data contains missing values due to
congestion, queuing overflow, faulty hardware or software and
unavailability of MAs & remote sites. These missing values
affect the quality of the Internet performance analysis. The
objective of this paper is to substitute the missing values
using the k-Nearest Neighbors algorithm (k-NN) and compare
the estimation with the statistical method. Therefore, PingER
historical data is first transformed into CSV format using a
PingER data dimensional model. Afterward, missing values are
imputed, using the statistical method and the k-NN algorithm,
on data containing the different percentages of missing values.
The results conclude that the k-NN algorithm is best suited
for the substitution of missing values in the PingER data as
compared to the method based on the statistical procedure.

Index Terms—Internet performance monitoring, PingER, miss-
ing value, k-Nearest Neighbors

1. Introduction

Internet performance measurement infrastructures peri-
odically measure the metrics of Internet links by running
different network measurement tests. The key Internet per-
formance measurement platforms available in the literature
are SamKnows, BISmark [1], Dasu [2], Netradar [3], Por-
tolan [4], RIPE Atlas [5], and perfSONAR [6] originally
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partially based on the PingER architecture [7]. The detailed
taxonomy of Internet performance measurement platforms
is available in [8]. These platforms use ping, mtr, cron,
ntp, dig, netstat, iperf, and traceroute com-
mands to measure the performance of the Internet links.
The data collected by these infrastructures are then used
to understand the comprehensive view of the Internet. For
example, the Federal Communications Commission (FCC)'
which is an inter-state communication regulator in the USA,
is using the Internet performance measurements to analyze
the performance of broadband providers to regulate the
industry in the country [8]. Further, such datasets are used
to explain the impact of Powerboost [9], ISP characteriza-
tion [10], [11], Broadband Mapping [12], Broadband Per-
formance [13], Internet Congestion [14], peer-to-peer (P2P)
streaming [15], and Connectivity of IPv4 & IPv6 [16]. Thus,
such datasets have a significant impact in revolutionizing the
performance of the Internet links around the globe.

Like other real-time performance measurement scenar-
ios, Internet Performance measures also suffer from missing
or incomplete data. For example, UC Trvine? provides a Ma-
chine Learning repository of 370 datasets for benchmarking
Machine Learning Algorithms which contains more than
40% of missing values [17]. Similarly, the missing values
percentage is quite high in Internet performance measure-
ments as packets get lost in a network due to congestion,
bottleneck links, queuing overflow, faulty network hard-
ware or drivers and due to the measurement host or target
host being unavailable due to end host outages. Further,
sometimes Internet packets are deliberately dropped by the
routers through efficient network management policies [7].
All these factors contribute to missing values in the Internet
performance measurements. These missing values seriously
affect the measurements by triggering biased in Internet
performance analysis. Moreover, the effect becomes drastic
when the missing values are not distributed randomly. The
most common approach used to handle missing values in

1. https://www.fcc.gov/
2. http://uci.edu/
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Internet performance estimation is to omit such observa-
tions. Thus, the analysis is carried out only on the complete
dataset. Consequently, this approach will lead to the loss of
effectiveness in the Internet performance analysis.

In this paper, the missing values in the Internet per-
formance measurements are substituted using k-Nearest
Neighbors (k-NN). This is because the Internet performance
measurements contain historical data covering several years.
For example, the dataset used in this paper is from PingER
(Ping End-to-end Reporting)® which is an Internet End-to-
end Performance Measurement (IEPM)* framework led by
SLAC National Accelerator Laboratory > [7]. It is running
for the last 20 years and contains a multi-domain historical
dataset (e.g., bandwidth, delay, jitter and loss) of nearly 20
years from 700 nodes in 170 countries of the world [18].
The analysis performed by removing the missing values or
replacing the missing values by other statistical methods
from the PingER dataset introduces bias in the estimation.
On the other hand, k-NN algorithm provides a precise
estimation of the missing values. The reason is that the k-
NN algorithm uses a weighted average feature to provide a
better local estimation of the missing values as compared to
the other statistical methods. Thus, making k-NN algorithm
best suits for substituting the missing values in the PingER
dataset.

The paper comprises three major contributions. First, the
PingER historical flat files containing the missing values are
converted into Comma Separated Value (CSV) file format
using PingER dimensional model. Secondly, the dimen-
sional model containing different percentages of missing
values i.e., 5, 10, 15 and 20% of missing values are replaced
by using row average and k-NN algorithm. Finally, the
performance analysis is carried out to conclude that the
k-NN algorithm substitutes the missing values with more
realistic ones as compared to row average. Thus, improving
the overall estimation of the Internet performance analysis
in the PingER dataset.

The remaining paper is organized as follows. Related
work is discussed in Section 2. Section 3 describes the
PingER framework. Section 4 formulates the problem. The
proposed approach for substituting missing values is ex-
plained in Section 5. Performance evaluation is outlined in
Section 6, and finally, Section 7 concludes the paper.

2. Related Work

Internet performance measurement frameworks use ded-
icated probes that periodically run network measurement
tests to mine the performance of Internet links on wired
and mobile networks [8], [19]. Currently, the key Inter-
net performance measurement frameworks are SamKnows’,
BISmark [1], Dasu [2], Netradar [3], Portolan [4], RIPE

. www-iepm.slac.stanford.edu/pinger/

. http://www-iepm.slac.stanford.edu/

. https://www6.slac.stanford.edu/

. https://confluence.slac.stanford.edu/display/IEPM/PingER+Regions
. https://www.samknows.com/
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TABLE 1: PingER monitored countries and populations by
region®

. No. of Populathn % of world
Region . of the region .

countries (Millions) population
Africa 50 988 14.57
Balkans 10 69 1.02
Central Asia 9 80 1.18
East Asia 4 1534 22.62
Europe 31 527 7.76
Latin America 21 557 8.21
Middle East 13 226 3.33
North America 3 342 5.05
Oceania 4 33 0.49
Russia 1 142 2.09
S.E. Asia 11 578 8.52
South Asia 8 1585 23.37
Total 165 6660 98.21

Atlas [5], and perfSONAR [6] originally partially based on
PingER architecture [7]. The detail discussion on these plat-
forms based on their deployment strategy, probing method-
ology, features, and research impacts is summarized by
Bajpai & Schonwalder in [8]. The data collected by these
platforms is used to analyze the end-to-end performance of
the links, quantifying the digital divide among the regions,
detecting congested routes, identifying last mile problems
and evaluating the impact of major events i.e., cable cuts,
tsunamis, earthquakes, and social upheavals.

Among above mentioned Internet performance measure-
ment frameworks, PingER is led by SLAC and is running
for the last 20 years. It covers a geographical area containing
over 98% of the world’s population as shown in Table 1. The
detail discussion on the PingER framework is available in
Section 3. It has gathered interesting multi-domain historical
performance data of the Internet links worldwide. However,
the data suffer from the common missing value problem, like
other real-time measurements, which affects the accuracy
of the estimation [17], [20], [21]. Normally, the analysis
is performed on such data by removing the missing values
completely. However, this approach introduces bias in the
estimated values.

Another approach in substituting the missing values
without losing the information available in the missing
observation is the imputation method [17], [22]. In this
technique, missing values are estimated using the known
association among the complete set of values in the dataset.
There are many standard statistical procedures (i.e., List-
wise Deletion (LD), Row Average or Person Mean Substi-
tution, Hot Deck, Multiple Imputation (MI), and Regression
Imputation) that are available for this purpose [23], [24],
[25]. Similarly, many machine learning algorithms are also
available for handling missing data imputation (e.g., k-
NN, Self-organizing Maps (SOM), Multi-layer Perceptron
(MLP), and Decision Tree (DT) construction algorithms) in
different problem domains [26], [27], [28].

The machine learning algorithms are more suitable for
substituting missing values because of their flexibility and
power of capturing higher order interaction among the



Figure 1: Worldwide geographical locations of PingER MAs, beacons and remote sites

completed values as compared to standard statistical tech-
niques [20]. Since PingER dataset is of historical nature,
therefore, k-NN which is a machine learning algorithm
provides a precise estimation of the missing values. This
is because k-NN uses a weighted average feature to provide
a better local estimation of the missing values as compared
to the statistical methods.

3. The PingER Framework

PingER is a framework to monitor end-to-end perfor-
mance of the Internet links worldwide. It was specially
designed in 1995 by SLAC to facilitate modern High Energy
Nuclear and Particle (HENP) physics experiments taking
place among sites such as SLAC, the Brookhaven National
Laboratory (BNL)® and the European Center for Particle
Physics (CERN)°. However, for the last decade, the objec-
tive of the project is to monitor the performance of the Inter-
net links around the world. Currently, PingER comprises of
about 50 active Monitoring Agents (MAs) in 20 countries of
the world [29]. These MAs send ping probes to 700 remote
sites located in 170 countries of the world. As a result,
10,000 MA-remote sites are developed covering an area
containing over 98% of the world’s population as shown in
Table 1. The North Korea, Central African Republic, Chad
and Guinea-Bissau, each more than one Million population,
are the only countries which do not have any MAs or remote
sites. Similarly, Figure 1 indicates the geographical locations
of PingER MAs (colored red), Beacons (monitored by most
MAs are colored blue) and Remote sites (colored green)
which cover nearly 98% of the of Internet users in the world.

3.1. PingER Methodology

In PingER, each sample measurement set is sent every
30 minutes. The MA goes through its list of remote sites

8. https://www.bnl.gov/world/
9. http://home.cern/

921

and for each sends an initial 100-byte ping that is used to
prime the routing caches and is discarded. This is followed
by sending up to thirty 100-byte pings at one second inter-
vals until ten responses are received. This is then repeated
for 1000-byte pings. Thus, each MA-remote site pair only
produces a little extra traffic of 100 bits/s on average
making PingER a lightweight Internet active performance
measuring framework [7]. The data collected for each set
of pings consists of an MA name, list of target remote
sites, IP addresses of MA & target remote sites, payload in
ping request, minimum Round Trip Time (RTT), maximum
RTT and average RTT [30]. Afterward, the data archived
by each MAs is pulled daily by the SLAC to a centralized
repository of text archives. Sixteen different network per-
formance metrics are extracted including packet loss, jitter,
unreachability, throughput, directivity, unpredictability, and
quiescence from the collected data.

3.2. Significance of PingER Dataset

Currently, the size of PingER data repository consists
of 100,000 flat files of 60 Gigabytes which is growing
at the rate of 800 Megabytes per month. The historical
compressed data files can be downloaded from the Pingtable
web interface '© or by anonymous FTP!!. The data is in
the form of tab-separated-value (.tsv) on an hourly, monthly
and yearly basis. The data is valuable for fine-grained anal-
ysis to predict current and future end-to-end performance,
bottleneck links, queuing effect, and congested routes. For
example, historical throughput trendline for SLAC to world
region is shown in Figure 2. Although it is clear from
the graph that Internet performance of Africa is improving,
however, it still lags the rest of the world. The major event
that caused this upgrade was 2010 FIFA World Cup which
not only brought three million football fans to Johannesburg
but was also accompanied by the landing of new submarine

10. http://www-wanmon.slac.stanford.edu/cgi-wrap/pingtable.pl
11. ftp://ftp.slac.stanford.edu/users/cottrell/
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Figure 2: Throughput trendline from SLAC to the world regions

cables in the region. As a result, Africa’s Internet went from
18 years behind Europe in 2010 to 16 years behind in 2015.
It may even catch up Europe by 2030 [31]. However, this
uptick in growth may be a temporary after effect of the
2010 World Cup. The current PingER throughput trendline
shows that Africa is falling further behind Europe i.e., nearly
60 times worse than Europe by 2040. PingER data can
also reveal information about major events like fiber cuts,
tsunamis, and social upheavals. Further, PingER monitoring
data is also used to develop case studies regarding the
Internet performance in the different regions of the world
i.e., Africa, Latin America, East Asia, Middle East, South
Asia & South East Asia'?. This indicates the importance of
the PingER historical data in Internet performance analysis
of the world.

3.3. Issue: Handling Missing Values

The PingER dataset contains missing values which can
affect the quality of the analysis. The reason for missing
data in PingER is because of packet loss triggered by
the congestion, bottleneck links, queuing overflow, faulty
network hardware or drivers, and due to the MAs or remote
site being unavailable owing to end host outages. All these
factors contribute to missing values in the PingER dataset
which is Missing Completely at Random (MCAR) [22], thus
affecting the quality of the dataset for critical analysis. The
quality of PingER dataset can be improved by substituting
the missing values. Several standard statistical and machine
learning imputation methods are available as discussed in
Section 1 & 2. However, this paper focus on the use of k-

12. https://confluence.slac.stanford.edu/display/I[EPM/PingER+Case+Studies
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NN which is a machine learning algorithm to handle missing
values in PingER dataset.

4. Problem Formulation Using k-NN

k-NN is an instant-based machine learning algorithm
where the objective function is only approximated among
the neighbors such that they minimize some distance mea-
sure. Further, the computation takes place only at the time of
classification or regression. The known values of the instants
act as a training set for the algorithm. However, no prior
training is required by the algorithm to generate an explicit
model or classifier and works fine with both qualitative and
quantitative type of datasets [17], [32]. Another important
feature of k-NN is that it can successfully predict accurate
results even with the increasing percentage of the missing
values in the data. Further, k-NN imputation is also robust
for noisy datasets and is less sensitive to the selection of the
number of nearest neighbors [21]. This makes k-NN the best
choice for handling missing values in the PingER dataset.

Consider a feature vector x of average Round Trip Time
(RTT)"® values of PingER dataset containing different per-
centages of the missing values. Suppose that the j** instant
of the feature vector x is missing. Euclidean distances from
x to all training instance are calculated such that they
minimize some distance measure and are arranged in the
ascending order while excluding the missing instances in
the feature vector x [21], [32]. Let V' be the set of k nearest
neighbor of x feature vector arranged in the increasing order
of the distances and is define by the Equation 1.

V={ul_, (1

13. http://www-wanmon.slac.stanford.edu/cgi-wrap/pingtable.pl
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Figure 3: Average RTT file with missing values

The optimal value of k& (nearest neighbor) is selected
using cross-validation technique. Afterward, the substituted
value for the j** instant of the feature vector z is calculated
using mean estimation of %k nearest neighbors (when all
neighboring instances are considered with the same level
of significance) as defined in Equation 2.

1 k
fj = %kaj
k=1

However, the weighted mean (i.e., by assigning greater
weight to nearest neighbors as explained by [33]) of k near-
est neighbors which is a refinement to the mean estimation,
is calculated by using Equation 3.

2

k
5 1
T = Zwkvkj 3)
k=1
and
k
W=> w 4)
k=1

where wj, in Equation 3 & 4 indicates the corresponding
weight to the k*" nearest neighbor of the j** instant of the
feature vector x. Further, wy, in case of Euclidean distance
based metrics is calculated by using Equation 5 [34].

1
d(glc,v;c)2
Finally, the missing j** instant of the feature vector x

of PingER dataset is substituted using the weighted mean
as given by Equation 3 using the k-NN algorithm.

(&)

Wy =

5. Proposed Approach for Substituting Missing
Values in PingER Dataset

The proposed approach of substituting the missing
values in PingER dataset consists of the following steps.

A. Extraction
The PingER server at SLAC fetches the zipped raw
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data from the remote monitoring nodes daily. It compresses
and stores them into flat files with txt.gz extension.
Each file name consists of the name of the performance
metric, packet size (100 or 1000 bytes), node, and date i.e.,
average_rtt-100-by-node-2017-05-05.txt.gz.
The data is retrieved via anonymous FTP 4 server at SLAC.

B. Missing values

The extraction of tar file contains raw flat files for
each day with the hourly data for all the days in the
PingER archive. Each flat file is appeared as shown in
Figure 3. The format of the file consists of a first line "0 1
2345678 91011 12 13 14 15 16 17
18 19 20 21 22 23" followed by lines of the form
"pinger-host.fnal.gov www—05.nexus.ao
241.197 240.974 241.044 242.636 240.974
240.954 240.990 249.199 241.093 241.464
241.091 241.079 241.091 241.170 241.088
241.046 241.039 241.037 240.999 240.984
241.236 240.988 241.039 240.967
pinger—-host.fnal.gov www—05.nexus.ao"
per day/host pair where 0 to 23 are 24 tokens (one
for each hour) between the initial and final src_name
and tgt_name tokens. In Figure 3, the missing data
is shown by a period (.) followed by a space i.e.,
"icfamon.dl.ac.uk 1lns62.lns.cornell.edu
108.871 107.671 109.657 .

108.892 .o 109.620

icfamon.dl.ac.uklns62.1lns.cornell .edu".
These missing values in the data are due to the ping
request or reply gets lost in the network. It may happen
due to congestion, bottleneck links, queuing overflow,
faulty network hardware or drivers. In some cases, ICMP
packets are deliberately dropped by the routers as a part of
efficient network management policies. Further, sometimes
the measurement host may not have been working or target
host may not have replayed to the pings due to outages.
In all cases, there is no value for the performance metric
being measured and a dot is recorded in the system. Total
missing values or number of dots per year in PingER data
files are shown in Figure 4.

14. ftp://ftp.slac.stanford.edu/users/cottrell
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Figure 4: Missing values in PingER dataset

C. Transformation

In this step, a MapReduce [35] data flow is executed
using the Cloudera Distribution of Hadoop (CDH) [36] and
SciCumulus [37] to transform the flat files of PingER data
into CSV format. The MapReduce data flow consists of
two steps. In the first step, mapper reads each raw PingER
text file for a given metric and day of the year. During the
second step, it transforms the raw text files of data into
a CSV format according to the PingER dimensional data
model [38].

6. Performance Evaluation

A. Evaluation Setup

The evaluation setup consists of a cluster of 4 virtual
machines running on Red Hat Linux 7.2!°. Each virtual
machine has four cores, 16 Gigabytes of Random Access
Memory (RAM), and 220 Gigabytes of storage. After
transforming the raw text files into a PingER dimensional
data model, missing values are imputed using the k-NN
algorithm as discussed in Section 4 and row average values.
The monitoring node is pinger.slac.stanford.edu
located in SLAC, California, USA. The target node is
www.startel.ao located in Luanda, Angola, Africa.
The monthly average RTT metric is used in the analysis. The
dataset ranges from December 2003 to April 2017. In order
to compare the effectiveness of the substitution method, a
reference dataset of average RTT is estimated by removing
all the missing values from the data; the estimation process
is described as listwise or case deletion [20]. Later, 5 to
20% values are deleted from the data at random to generate
5, 10, 15 and 20% test dataset of missing values. Each
missing value dataset is substituted with k-NN algorithm
and row average to recover the missing values in the test
dataset. Afterward, the substituted values are correlated
with the original data using Normalized Root Mean Square

15. https://www.redhat.com
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Error (NRMSE) to verify the accuracy of the estimation
process between k-NN algorithm and row average [21].
The results are discussed in the next section.

B. Performance Results

The performance of k-NN and row average is evaluated
on average RTT values of PingER data with 5, 10, 15 and
20% of the missing values. In row average, missing values
are simply replaced with the row mean whereas in k-NN,
missing values are replaced with estimated values of RTT
using 1, 3, 5, 7, 9, 11, 13 and 15 nearest neighbors. The
optimal value of k is 7-11 selected by cross-validation.
Consider the results as shown in Figure 5, k-NN surpasses
row average in estimating the missing values accurately.
At low percentage of missing values i.e., 5 or 10% the
average deviation from the true value is only 3 to 6%. This
is because the missing values are few, consequently, row
average precisely captures the hidden pattern information in
the average RTT values and correctly recovered the missing
values in PingER dataset. However, as the percentage of
missing values increases from 10 to 20%, row average
failed to capture the hidden pattern information in the
data. As a result, the NRMSE is significantly higher when
compared with reference dataset. Thus, row average leads
to the unsatisfactory estimation of the missing values in the
PingER data.
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Figure 5: NRMSE in row average and k-NN algorithm

On the other hand, the performance of k-NN is quite
satisfactory even with the high percentage of missing values
i.e., 15 and 20%. The results are shown in Figure 5 & 6.
At 20% of missing values, the average derivation in the
estimated values is less than 6% from the original values.
This, indicates the accuracy of the k-NN algorithm as com-
pared to row average. In k-NN, missing values are estimated
based on the local region (i.e., nearby neighbors) whereas in
row average the neighborhood comprises of the entire row
which makes it highly irrelevant to the estimation problem.
Further, in k-NN, nearest neighbors are assigned with greater
weight as compared to far neighbors based on the Euclidean
distance and an optimal value of k. This weighted average
procedure provides a better local estimation of the missing
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Figure 6: Monthly average RTT from SLAC to African host with substituted values

values. Figure 6 indicates that k-NN NRMSE in PingER
average RTT with 15 and 20% of missing values only ranges
from 0.04 to 0.06 as compared to row average where error
vary from 0.15 to 0.23 with respect to original values. Thus,
making k-NN the best choice for the estimation of the
missing values in the PingER dataset.

7. Conclusion

The missing values in Internet performance metrics cap-
tured through PingER framework is a generic problem. This
is due to the congestion in links, queuing overflow, faulty
hardware or software and unavailability of MAs & remote
sites all of which are unavoidable. These missing values
directly affect the quality of the fine-grained Internet perfor-
mance analysis. Therefore, in this work, PingER historical
flat files are first converted into CSV format using a PingER
data dimensional model. Afterward, missing values are im-
puted using row average and k-NN algorithm on a dataset of
average RTT between SLAC-USA and Luanda-Angola pair.
The data contain a different percentage of missing values
ie., 5, 10, 15 and 20% of missing values with respect to
a reference dataset. At low percentages of missing values,
both methods provide estimated values with low values of
NRMSE. However, as the percentage of missing values is
raised from 10 to 20%, k-NN algorithm outperforms the
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row-average method in PingER dataset. Thus, it concludes
that k-NN is the best approach to estimate the missing
values in PingER historical dataset to improve the quality of
the Internet performance analysis worldwide. However, the
results cannot be generalized to different types of dataset.
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