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Abstract

In preparation of the CERN beam test, the Perugia group (S. Germani et. al.) and
B. Lott have used two different methods to estimate the quantiles (specifically 68 %
and 95 %) of the instrumental Point Spread Function (PSF). The Perugia method is
based on calculating the quantiles directly from the histogram of space angle devia-
tions (counting method) whereas Benoit Lott’s method (fitting method) is based on
estimating the quantile from fitting a function (proposed by Toby Burnett) to the
data and estimating the quantiles from the fit results. This short note summarizes a
study of some of the statistical properties of the two methods. It is concluded that
the two methods are equivalent if the data is well fitted by the fit function. Fur-
thermore, statistical errors in both methods are estimated with reasonable precision
even if the fit is worse. This implies that both methods can be used to estimate the
required statistics for a given precision.

1 The two methods

1.1 The fitting method

Toby Burnett (LAT-AM-4355) showed that the PSF can be reasonably well
parameterized by following function:
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σ2 and r being the angular deviation between true and recon-
structed direction divided by an energy dependent scaling function. This func-
tion will be referred to as Burnett function in the remainder of this note.
The idea of the fitting method is to fit this function to the data and then to
retrieve the containment radius (we will assume the 68 % containment quan-
tile throughout this note and call the containment radius Θ68) analytically
from the fitted function. The error on this radius can be calculated from the
covariance matrix of the fit parameters.



1.2 The counting method

The counting method calculates the quantiles of the data distribution, which
gives the containment radius at any confidence level. The error on the Θ68 is
given by:

∆Θ68 =
Θ(N68 + ∆N68) − Θ(N68 − ∆N68)

2
(2)

giving as measurement result Θ68 ± ∆Θ68. N68 is the number of events which

fall within Θ68 and ∆N68 =
√

Ntot · 0.68 · (1 − 0.68) (binomial error).

2 Procedure

To compare the two methods, the following procedure is used:

• Fitting method

· Step 1: generate a data histogram by drawing random numbers from the
Burnett function with γ = 2 and σ = 1.

· Step 2: fit the Burnett function to the generated histogram and calcu-
late the estimate of Θ68 and the estimate of the error on Θ68 from the
covariance matrix.

· repeat step 1-2 Npseudo
exp times and store the estimates of Θ68 and its error.

• Counting method

· Step 1: generate a data histogram by throwing random numbers according
to a Landau function. The parameters of the Landau function are obtained
from a fit to a representative data histogram provided by the Perugia
group.

· Step 2: calculate Θ68 from the data histogram by counting (as described
above).

· Step 3: repeat step 1-2 N pseudo
exp times and store the estimates of Θ68 and

its error.

Throwing according to Landau represents a histogram of scaled Θ (according
to Perugia procedure), whereas throwing according to the Burnett function
represents a reweighted histogram (according to Benoit Lott’s procedure).

In both cases the function which generated the data is known , meaning the
true value of Θ68. Thus, the bias of the method can be calculated. Further-
more, the mean of the error estimates should be similar to the rms of the
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distribution of the estimates of Θ68.

It should be noted that we use the same functional form for fitting the data
histogram as was used to generate the histogram, which implies that the Bur-
nett function yields a good fit to the data. Benoit Lott’s presentation on the
2nd Pisa workshop (16/17.5 2006) shows that this is not necessarily true (the
effects of having non-Burnett function contributions will be illustrated in sec-
tion 4). Figure 1 illustrates a typical fit used in the presents study.
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Fig. 1. A typical distribution with the fit of the Burnett function

3 Results

Table 1 summarizes the results on estimate, true and expected error as well as
bias. These results are obtained using 10000 pseudo-experiments with 1000,
10000 and 100000 events in each PSF.

Both the counting method and the fitting method give consistent results. The
relative error scales as expected as 1/

√
counts and the relative error presented

here is comparable to what has been presented by the Perugia group and by
Benoit Lott. Both methods give reasonably exact estimates of the statistical
error. The bias of both methods is smaller than 1 %. The bias of the Perugia
method (.5 %) seems to be independent of statistics, indicating a systematic
effect (a guess could be the binning).

Examples of the distribution of error estimates and the difference between the
true and estimated values of Θ68 can be found in figures 2 and 3 for the fitting
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method and in figures 4 and 5 for the counting method. The histograms are
based on 1000 pseudo-experiments with 10000 events in each PSF.

σest σtrue rel. error rel. bias

Fit

1k 0.14 0.13 0.05 0.01

10k 0.04 0.04 0.01 0.0007

100k 0.013 0.013 0.004 0.005

Count

1k 0.0289 0.0288 0.049 0.005

10k 0.0089 0.0088 0.015 0.005

100k 0.003 0.0028 0.005 0.005

Table 1
Results of the study on the fitting (Fit) and counting (Count) method. The first
column contains the number of events in the histogram, the second column the
rms of the distribution of estimates, σtrue, the third column is the relative error
and the last column is the relative bias. This results were obtained using 10000
pseudo-experiments.
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Fig. 2. Example of the distribution of the difference between the true and the esti-
mated Θ68 for the fitting method (1 k pseudo-experiments, 10 k events in each PSF
histogram)

4 What if a bad fit is obtained ?

In order to illustrate the effect of obtaining a bad fit with the Burnett function,
in the generation step an additional Landau-shaped contribution is added,
which will not be accounted for in the fitting. This mimics the excess of
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Fig. 3. Example of the distribution of the estimated errors for the fitting method
(1k pseudo-experiments, 10k events in each PSF histogram.)
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Fig. 4. Example of the distribution of the difference between the true and the esti-
mated Θ68 for the counting method (1 k pseudo-experiments, 10 k events in each
PSF histogram)

large deviations seen in the data. The total integral for this Landau con-
tribution is adjusted to roughly yield a χ2 comparable to what was presented
by Benoit Lott (1 % of the contribution of the Burnett function, a MPV of
0.4 in log

10
∆Θ/scale was used). For this quick illustration we simulate 1000

pseudo-experiments with 10000 events in the PSF. An example of a resulting
fit is given in figure 6.

Figure 7 shows the distribution of the difference between true and estimated
Θ68. It can be seen that the use of the Burnett function as a fitting function
in this case causes a ∼ 10 % bias on the estimate. However, the rms of the
distribution and the mean error estimate agree to within 6 % , which is proba-
bly good enough for the purpose of estimating required statistics. The relative
error (1.7 %) can be compared with the one found for a perfect fit (1.4 %,
obtained from 10000 pseudo-experiments), which seems reasonably consistent.
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Fig. 5. Example of the distribution for the estimated errors for the fitting method
(1k pseudo-experiments, 10k events in each PSF histogram.)

 / ndf 2χ  102.1 / 33
norm      629± 3.048e+04 
sigma     0.007± 1.004 
gamma     0.028± 1.843 

/scale)θ∆log10(
-0.5 0 0.5 1 1.5 2 2.5 3

2
/s

ca
le

)
θ∆

dN
/d

(

1

10

210

310

410

 / ndf 2χ  102.1 / 33
norm      629± 3.048e+04 
sigma     0.007± 1.004 
gamma     0.028± 1.843 

Fig. 6. A histogram generated by a Burnett function plus a Landau with MPV=
0.4. The fit of the Burnett function is also shown.

5 The 95 % containment radius

For the 95 % containment radius, the same arguments apply as for the 68 %
containment radius. However, if (as seems to be the case in data) the Burnett
function gives a relatively bad fit (due to a contribution at higher deviations
which is not accounted for in the fit, see previous section), the relative bias
increases to ∼ 30 %. Figure 10 shows the absolute bias for the 95 % radius
for both a perfect and a bad fit.

For the estimate of required statistics this does not matter. The mean error
estimate and the rms of the distribution still agree quite well in both cases.
The relative error is a little larger than in the 68 % case but increases only
negligibly due to the bad fit (from 4 % in the perfect fit case to about 5 % in
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Fig. 7. Example of the distribution of the differences between the true and the
estimated Θ68 for the fitting method (1 k pseudo-experiments, 10 k events in each
PSF histogram) in the case that the Burnett function gives a relatively bad fit to
the data.
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Fig. 8. Example of distribution for the estimated errors for the fitting method (1k
pseudo-experiments, 10k events in each PSF histogram) in the case that the Burnett
function gives a relatively bad fit to the data.

the bad fit case).

6 Conclusions

From the presented results it is concluded that the two methods are statisti-
cally equivalent. Both methods give reasonably correct estimates of the error
of Θ68, and can thus be used to estimate the required statistics for a given
precision. In the case of the fitting method, this is true even if the fit is rela-
tively bad.
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Fig. 9. Example of the distribution of the differences between the true and the esti-
mated Θ95 for the fitting method (1 k pseudo-experiments, 10 k events in each PSF
histogram) in the case that the Burnett function gives a good fit to the data(upper
panel) and in the case that the Burnett function gives a bad fit to the data (lower
panel)

The bias of the counting method is neglible, probably only due to binning
effects. If the correct fitting function is used also the fitting methods yields
very small bias. However, not surprisingly, bad fits can cause significant bias in
the estimate. If (as seems indicated in the data) an excess of large deviations
(w.r.t the Burnett function) are present, the bias increases for higher quantiles
of the containment radius.
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Fig. 10. Example of distribution for the estimated errors (95 % containment) for
the fitting method (1k pseudo-experiments, 10k events in each PSF histogram) in
the case that the Burnett function gives a good fit to the data (upper panel), and
in the case that the Burnett function gives a bad fit to the data (lower panel)
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