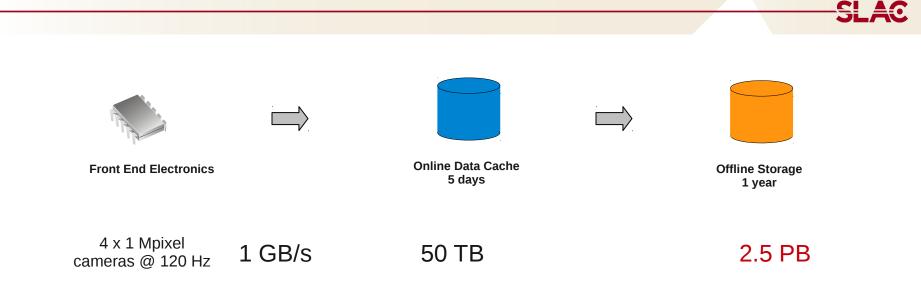

Thomas Ndousse, DOE ASCR Program Manager, SLAC Visit August 21st, 2012

LCLS Data Collection



FEL Data Systems Key Challenges

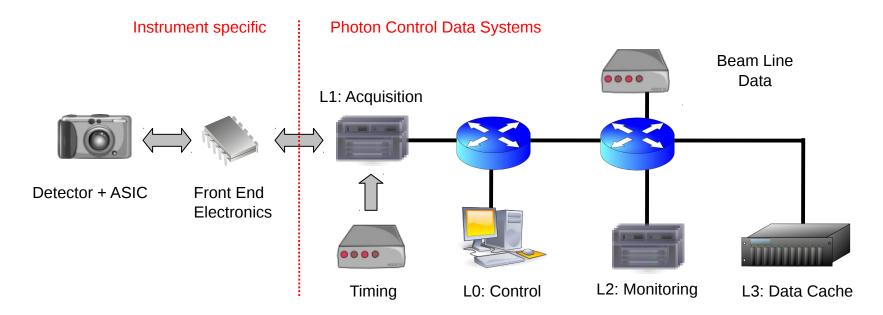
- Ability to readout, event build and store multi GB/s data streams
- Allow experimenters to analyze data on-the-fly
- Flexibility to accommodate user supplied equipment
- Ability to store and analyze very large data sets

SLAC

Does LCLS have a Data Problem?

LCLS doesn't have a dataflow problem, yet

- Rate could increase x3 (operating LCLS @ 360 Hz is possible, but unlikely)
- Bigger contributor will be introduction of larger, multi mega-pixels, detectors


LCLS does have a (small) storage problem

- Unlike dataflow, storage will increase with concurrent instrument operations
- LCLS can afford to reduce its storage requirements by filtering and compressing the data offline

	Beam Rate	Trigger	Event Size	Recorded Data
LCLS	120 Hz	120 Hz	10 MB	2 PB/yr
SACLA	60 Hz	60 Hz	12 MB	
XFEL	27 kHz (10 Hz * 2700 [5MHz])	3 kHz		50 PB/yr
BaBar	238 MHz	4 kHz / 300 Hz	50 kB	1 PB/yr
ATLAS	40 MHz (20 MHz)	100 kHz / 200 Hz (65 kHz / 700 Hz)	1.5 MB (1.4 MB)	10 PB/yr (3 PB/yr)

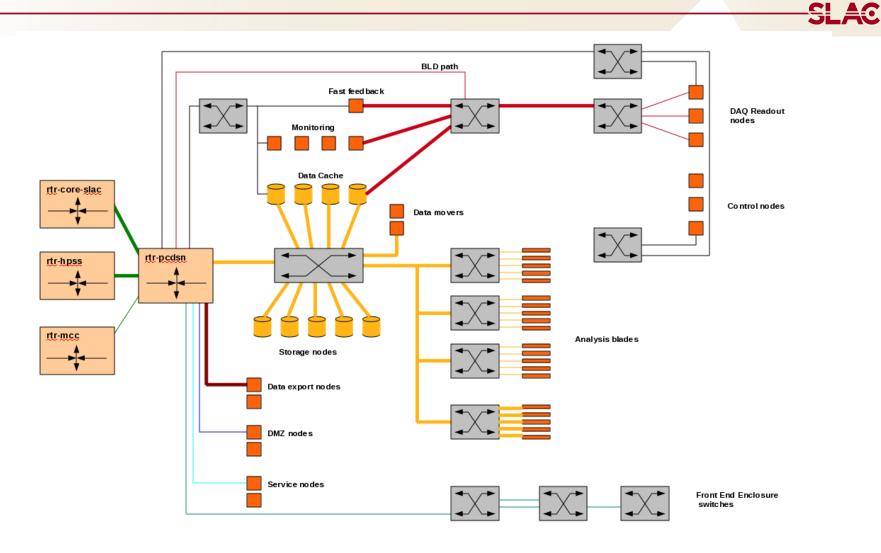
LCLS DAQ Architecture

- Each instrument has its own, dedicated instantiation of DAQ system
- Most of the customization effort goes into the readout of the instrument specific frontend electronics
 - LCLS would greatly benefit by the standardization of the readout protocol adopted by the various detectors

Looking at Data on-the-fly: Online Monitoring

- Online monitor framework allows users to analyze, on the fly, the quality of the data
 - Implemented by snooping on the DAQ traffic between the readout nodes and the data cache nodes
 - Guarantees that monitoring does not impact data acquisition
- Users can augment the existing monitoring features by dynamically plugging in their code to the core monitoring framework

SLAC


Separating Users' Activities from Data Acquisition: Online Data Cache

- Data cache nodes:
 - assemble the components from the different readout nodes which correspond to same pulse (event building)
 - store full event to the local RAID array
- Data cache currently 200TB per instrument
 - isolates DAQ system from users operations
 - allows experiments to take data even during outages of the offline system
- Data files are copied over 10Gbps links from online cache to mediumterm storage where they are made available to the users for offline analysis and for off-site transfer

DAQ Interfaces to Other Subsystems

- Controls: DAQ interfaces to controls in order to:
 - store some user selected EPICS process variables together with the science data
 - control any device that can be used to perform a scan or a calibration run
- Beam Line Data: DAQ receives small pieces of information which contain key beam measurements
 - currently three packets per pulse:
 - e-beam parameters from accelerator, timing information from RF cavity, gas detector measurements from front-end enclosure
 - timestamped with the pulse ID and stored with the science data

LCLS Data Networks

User Data Analysis

- Analysis system shared among the different instruments
- Main physical components of analysis system are:
 - medium-term storage
 - long-term storage
 - processing farm
- Analysis system also provides software frameworks to:
 - copy the science data to medium and long term storage
 - translate the data into user formats (HDF5)
 - parse and analyze the data

SLA

Science Data Storage

- Medium-term storage is disk based
 - Current size 4 petabytes
 - Each PB has maximum aggregated throughput of 12GB/sec
 - Each client has throughput from 50 to 800 MB/s
- Long-term storage uses tape staging system in the SLAC central computing facilities
 - Can scale up to several petabytes
- Science data files policies:
 - Kept on disk for 1 year
 - Kept on tape for 10 years
 - Access to the data for each experiment granted only to members of that experiment

Data Movers

- Experimenters allowed to transfer their data files to their home institution if they decide to do so
 - two data mover nodes allocated for that purpose
- Disk storage communicates with
 - tape staging system
 - dedicated dual 10Gbps links
 - SLAC main router for off-site data transfer
 - additional dual 10Gbps links

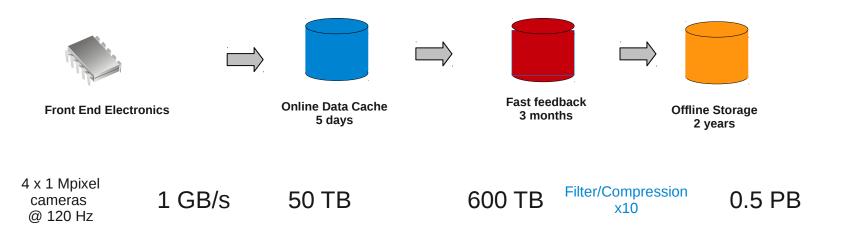
Data Processing

- Processing farm based on:
 - Batch pool: 1000 cores
 - Interactive pool: 192 cores
- Farms live in the experimental areas with fast access to the science data files in medium-term storage
 - Batch nodes: Infiniband QDR
 - Interactive nodes: 10Gb/s Ethernet

SLAC

Lesson Learned 1 or Why Vetoing Events for FEL Experiments Can Be Tricky

- Very hard to implement effective trigger/veto system
 - Not a technical/computing issue: the ability to veto events is already implemented in the system
 - Vetoing based on beam parameters not effective (most pulses are good)
 - Must be based on event features, but hard to get help from users in setting veto parameters which define event quality
 - Users themselves often don't know what these parameters or their thresholds should be
 - Users are usually very suspicious of anything which can filter data on-thefly
- Benefit of vetoing events based on the event features can be large
 - For some experiments we observed factor 10-100, but this ratio will likely decrease in the future as hit rate improves (for example by improving injector technology)


۲

Lesson Learned 2 or Why HEP Style Online-Offline is Not Enough

- HEP style online/offline separation doesn't work
 - The core online monitoring is not enough for many experiments
 - The skill level required to write on-the-fly analysis code is too high for most users
 - As a consequence some experiments feel they fly blind
- Critical to provide users the ability to run offline style code for fast feedback
 - Currently an issue for:
 - High data volume combined with low hit rate experiments: offline designed to keep up with DAQ only in average, not instantaneously; fast feedback nodes which look at subset of the data don't provide enough statistics
 - HDF5 based experiments: must wait for additional translation step

Lesson Learned 3 or When Users Can Use a Little Push

- Plan to modify data retention policy with dual-fold goal: encourage users to filter their data and provide fast access to the data for longer period
 - Set a quota on data kept on disk and extend the lifetime of the data on disk (1 -> 2 years)

Lesson Learned 4 or Why We Need Yet Another Software Framework

- High fragmentation analysis tools adopted by users for data analysis
 - psana (LCLS C++ framework), pyana (LCLS Python framework), Matlab, IDL, Igor, etc
- Strong need of high performance, open source framework
 - HEP community attempted something similar with ROOT, but was not fully successful
- Should provide
 - Way to make core objects and user data persistent (and retrieve)
 - High quality and powerful plotting, histogram, fitting tools
 - Both scripting and compiled languages
 - Algorithms needed by the photon science community

Conclusions

- Things will get more interesting with the planned future 16Mpixel detectors
- Introduction disk-based fast storage layer between online and offline critical for LCLS
- Strong need of high performance, open source, software ecosystem for data analysis at FEL facilities
- Standardization of detector readout protocol would greatly benefit both facilities and detector development efforts
 - There are many detector readout protocols available (eg, UDP, PGP, camera link), no real need to introduce new ones
 - Standardization of the protocol messages would also be extremely helpful (albeit ambitious)