The LSST Sequencer

Introduction

The aim of this document is the description of the functionalities of the sequencer designed
to drive LSST CCDs. This system can generate all the signals needed to acquire data from
CCDs that are: parallel clocks, serial clocks, ASPIC signals and the ADC conversion start. Some
other spare signals are also available. The architecture described below is the first version
realized and has to be intended as a starting point to design the final sequencer for LSST.

The Sequencer Architecture

The sequencer is divided in 16 subroutines. Each subroutine generates a synchronous
sequence of signals. The user, by means of parameters, defines that sequence. The
execution order of different subroutines is written in a memory called stack register.

The Subroutine

The subroutine is the basic element of the sequencer and is set by the user to generate a
time sequence of 32 output signals. Each subroutine is divided in 16 time slices. Each time
slice is defined as a period of time where the outputs have the same value; therefore it is
characterized by the state of each output (1 or 0) and by the time interval. An outputs
transition is done during the transition between two time slices.

To set a single time slice two configuration words are needed: a 32 bits word for the outputs
and a 16 bits word for the time interval.

A subroutine starts executing the first time slice and goes on sequentially until either the
16™ time slice is executed or when a time length value set at 0 is found. This means that also
a subset of time slices is configurable. The time length is expressed in units of 10ns. This
gives a resolution of 10ns for the outputs transitions.

The example below shows how a subroutine works.

Out1l

Out 3

Out 31

raheodessdgede b

Time slice 1 Time slice 2 Time slice 16
120 ns 200 ns 100 ns
In the table below the time slice parameters are described.
Time Slice 1 Time Slice 2 Time Slice 16
Output #1 1 0 1
Output #3 0 1 0
Output #31 1 1 0
Time length 12 x 10ns 20 x 10ns 10 x 10ns

The first subroutine is a special subroutine since is composed only by one time slice and is

used to set outputs default values. When the system is in a non-operation mode the output

values are set as described in this subroutine.

The Stack Register

As mentioned, the subroutines execution order is defined in the stack register that is a

memory of 65k 32 bits words. At each address the subroutine to execute and the number of

times the same subroutine has to be repeated are written. When the sequence starts the

system launch the first subroutine for the required number of times. At the end jumps to the

next address and perform the next subroutine.

An “infinite loop” option is also available. Activating a special flag the system is forced to
perform the same subroutine until the loop is stopped. To exit from the infinite loop
condition two different options are available:

e STEP command;
e STOP command;

With the STEP command the system exit from the infinite loop and jump to the next
stack register’s address executing the instruction contained in it. With the STOP
command the time sequence ends.

Another parameter to be set is the “last address value”. This represent the last stack
register’s address to be executed.

Once the sequencer is configured, the system is ready to start. When the START command
sent, the sequencer read the parameters contained at the stack register’s address 0 and
execute the corresponding subroutine for as many times as indicated in the stack. At the end
jumps to the address number 2 and launch the corresponding subroutine. The process goes
on sequentially trough all addresses until the “last address value” is reached.

The figure below shows an example of the timing sequence.

START m Infinite loop Repetitions (227=134M)

Sub#4 NO 3
Sub#6 YES XXXX
Sub#1 NO 2
v Sub#6 NO 1M
bl STEP

N

Sub#6
Sub#4 | Sub#4 | Sub#4 - Sub#1 | Sub#1

TIME

START

The written configuration is valid until a reset command is sent. This means that, after the
configuration phase, the system performs the same sequence each time a START command
is sent.

The sequencer’s main characteristics are summarized below:

* Number of Subroutines: 3 + default state;

* Maximum number of time slices per subroutine: 16;

* Time resolution: 10ns;

* Maximum time slice length: 2*° x 10ns = 655ys;

* Stack register length: 256 words;

* Maximum number of repetitions per subroutine: 2°° = 67M;
* “Infinite loop” execution;

* STOP & STEP commands.

Programming the sequencer using the LSST’s DAQ

When the LSST’s DAQ is used all the configuration parameters are sent using that system.
From the user point of view the interface consist of an address and a data filed; for this
reason each kind of sequencer parameter is identified by an address. The associated data is
the value that will be written. In other words, to write a value for a specific parameter, the
user will write that value into a specific address.

In the following table all the address and data needed to configure the sequencer are
reported:

Address value Data value action

0x100000 “ST” 0x”00000000” Set the outputs values
”00000000” for the time
slice “T” of the subroutine
IISII

0x100000 “ST” 0x0000”tttt” Set the time value ” tttt” for
the time slice “T” of the
subroutine “S”. The time is in
unit of 10 ns

0x300000”aa” ox”rrrrrrrr” Write in the Stack memory
at the address “aa” the word
“rrrrrrrr” (see below for
details)

0x40000000 0x”000000”mm” Write “mm” as the last stack
max address used

0x50000000 0x00000000 Send the command “step”
(infinite loop mode)

0x60000000 0x00000000 Send the command “stop”
(infinite loop mode)
0x00000009 0x00000004 Sequencer start

Data in the stack register are mapped in this way:

Bit 31 — 30: not used.

Bits 29-28: subroutine to execute.

Bit 27: infinite loop.

Bits 26 to 0: sub repetitions .

On the current version only 12 sequencer outputs are used. The current outputs mapping is

this:
ADC_trigger
ASPIC r_up
ASPIC_r_down
ASPIC_reset
ASPIC_clamp
CCD_ser_clk(0)
CCD_ser_clk(1)
CCD_ser_clk(2)
CCD_reset_gate

CCD_par_clk

<= sequencer_outputs(0);
<=sequencer_outputs(1);
<= sequencer_outputs(2);

<= sequencer_outputs(3);

<= not(sequencer_outputs(4)); the signal is inverted on BEB

<= sequencer_outputs(5);

<= IOI’_

<= IOI’_

<= sequencer_outputs(6);

<= sequencer_outputs(13 downto 10);

