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Outline

I Introduction and context.

I The Instrument Response Functions (IRFs):
I effective area;
I point-spread function;
I energy dispersion.

I Systematic uncertainties on the IRFs (time permitting).

I Propagating the systematic uncertainties to high-level science
analysis.

I And, of course, more exercises !
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Parametrization of the IRFs
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Definition of the coordinate system

+x
+y

+z
v

φ

θ

I IRFs parametrized as a function of the energy E and the direction
(θ, φ) in instrument coordinates.

I Strong dependence on E and θ, much weaker dependence on φ.
I Also: front- and back-converting events treated separately:

I remember: front and back sections of the TKR have very different
performance.
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Monte Carlo Aeff
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(b) Back

I Aeff(E , v̂ , s): the product of the geometrical collection area, γ-ray
conversion probability, and selection efficiency for a γ ray with
energy E and direction v̂ in the LAT frame.

I Generating the effective area tables (i.e., 2-dimensional histograms):
I generate known isotropic incoming flux (with E−1 spectrum, i.e.,

with the same number of events for each logarithmic bin);
I count how many events pass the selection cuts in each (Ei , θj) bin;
I normalize to input flux.

I Note: we bin events in log E and cos θ:
I φ dependence treated as a correction (more on this later);
I the ScienceTools take care of the interpolations for you.
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Aeff tables derivatives1 (1/2)
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(b)

—Aeff vs. E (at fixed θ).

I On-axis Aeff increases up
∼ 100 GeV.

I > 100 GeV: events are harder to
reconstruct (backsplash).

—Aeff vs. θ (at fixed E ).

I Less cross section as you go
off-axis.

I Off-axis events: easier for
back-converting events to
intercept the CAL.

I Exercise: Why is the effective area decreasing below ∼ 1 GeV?

1Here and in the following the IRFs are tabulated in correspondence of the markers
and the points are smoothly connected
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Aeff tables derivatives (2/2)
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—Acceptance A(E ):

A(E ) =

∫
Aeff(E , θ, φ) dΩ

— Field of view FoV:

FoV(E ) =
A(E )

Aeff(E , θ = 0)

I Exercise: Estimate the high-energy on-axis Aeff , the high-energy
acceptance and the corresponding FoV with paper and pencil.
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Aeff corrections
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I Correction for livetime dependence:
I the ghost effect is taken into account on average in the MC

simulations by overlaying a library of out-of-time triggers.
I but the background rate is dependent on the geomagnetic location

of the spacecraft, and tracked by the livetime fraction.

I Correction for the φ dependence:
I treated as a correction on top of the average Aeff and included in the

FITS files of the IRFs;
I by default the phi dependence is not used in the ScienceTools;
I generally negligible for long-time observations (see next slide).
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Aeff and solar flares
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(b)

I During the brightest solar flares hard X-rays cause spurious activity
in the ACD;

I this causes otherwise reconstructable photons to be tagged as
charged particles;

I the IRFs do not adequately describe the instrument during these
intervals.
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Can you guess what these are?
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(b)

I Livetime maps in instrument coordinates.

I Credits: Eric Charles2

I check them out at http://apod.nasa.gov/apod/ap120504.html.

I Take-away message: things that average out in long-term
observations do not necessarily do so on short timescales.

2If you were here last year you would have met him in person.
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Point-Spread Function

I P(v̂ ′;E , v̂ , s): the probability density to reconstruct an incident
direction v̂ ′ for a gamma ray with (E , v̂) in a given event selection.

I For a given point (E , θ) in the LAT phase space the PSF is not a
single number (like Aeff) but rather a p.d.f.:

I need a functional form to parametrize it;
I for the Monte Carlo PSF we use the sum of two King functions.

K(x , σ, γ) =
1

2πσ2

(
1− 1

γ

)
·
[

1 +
1

2γ
· x2

σ2

]−γ

I The PSF varies by orders of magnitude across the LAT energy
range:

I at low energy it is dominated by multiple Coulomb scattering in the
W conversion foils (which scales like E−1);

I at high energy it is determined by the TKR strip pitch and lever arm.

I Exercise: Estimate the asymptotic high-energy PSF for front- and
back-converting events. Why are they different?

I Exercise: Estimate the rollover energy of the transition between the
two regimes.
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PSF prescaling and fitting
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(b)

I PSF tables are generated with the same MC sample used for Aeff :
I calculate δv = |v′ − v| event by event.

I First step: prescaling takes care of the PSF energy dependence:

I Scaling function: SP(E) =

√[
c0 ·
(

E
100 MeV

)−β
]2

+ c2
1 .

I Scaled angular deviation: x = δv/SP(E).

I x histogram is converted into a p.d.f. wrt solid angle and fitted with
a double King function.

I In the FITS files of the IRFs we store the SP(E ) parameters and the
fit parameters.
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Scaled angular deviation behavior
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(b) Back
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(c) Front
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(d) Back

I A lot of richness in the (E , θ) plane.
I remember: we prescale in energy, not in inclination angle.
I (And we neglect the φ dependence of the PSF.)
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In-flight PSF
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I Monte Carlo prediction for the width of the core of the PSF is
underpredicted above a few GeV;

I we think we understand the root cause and can mitigate it to a large
extent (massive data reprocessing undergoing to demonstrate that).

I For the time being we derive the PSF directly from flight data, by
means of a stacking analysis of selected point sources:

I the statistics do not allow to determine the θ dependence;
I the in-flight PSF is really a PSF averaged over the FoV;
I (which is perfectly adequate for most long-time observations).
I Also: in-flight PSF uses a single King function (does not match the

95% containmebt very well).
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Fisheye effect

I Definition: bias in the reconstruction γ-ray directions toward the
LAT boresight.

I Why does that happen?
I Particles scattering toward the LAT boresight are more likely to

trigger the instrument and be reconstructed;
I especially true at low energy and large angles.

I Is it an important effect?
I Generally not;
I this is only a systematic bias in instrument coordinates;
I over long integration time any source is typically seen at all angles;
I our PSF parametrization includes the broadening due to the fisheye

effect.
I It is potentially important for short observations!

I How do you measure it?

φ̂ =
ẑ × v̂

|ẑ × v̂ |
θ̂ =

φ̂× v̂

|φ̂× v̂ |
δθ = − sin−1

(
θ̂ · (v̂ ′ − v̂ )

)
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Fisheye effect
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I Typically smaller than 1;
I except for very low energies and very large angles;
I and especially for the TRANSIENT class.
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Energy Dispersion

I D(E ′;E , v̂ , s): the probability density to measure an event energy E ′

for a gamma ray with (E , v̂) in the event selection s.

I Parametrization strategy similar to that of the PSF in many respects.

I Unlike the PSF, the energy dispersion is ignored by default in the
standard likelihood fitting:

I negligible effect in many situations—except for energies below
100 MeV;

I ScienceTools can now be told to take it into account.
I Is it important? This will be the subject of our hands-on session.

I Energy dispersion prescaling:
I scaling function: SD(E , θ) =

c0(log10 E)2 + c1(cos θ)2 + c2 log10 E + c3 cos θ + c4 log10 E cos θ + c5;
I scaled energy deviation: x = (E ′ − E)/(ESD(E , θ)).

I Fitting of the scaled variable:
I 4 piecewise Rando functions: R(x , x0, σ, γ) = N exp

(
− 1

2

∣∣ x−x0
σ

∣∣γ);
I fit parameters stored in the FITS files of the IRFs.
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Energy dispersion scaling function
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I Again, a lot of richness as a function of E and θ.

I Beware: the value of the scaling function at a particular
energy/angle is not the energy resolution at that energy/angle;

I (the two things are obviously related to each other, though, as both
represent the width of the energy dispersion.)

I We define the energy resolution as the half width of the energy
window containing 34% + 34% (i.e., 68%) of the energy dispersion
on both sides of its MPV, divided by the MPV itself.

Luca Baldini (INFN and UniPi) Fermi Summer School 2012 18 / 33



Scaled deviation and energy dispersion
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I Note that the low-energy tail is relatively more prominent than the
high-energy one.

I Exercise: If you had to choose, would you prefer a pronounced
low-energy or high-energy tail?
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Energy resolution
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(b)

—Energy resolution vs E :

I sweet spot between
∼ 1–100 GeV;

I low energy: energy deposited in
the TKR not negligible
anymore;

I high-energy: shower leakage
becoming dominant.

— Energy resolution vs. θ:

I energy resolution improves at
large angle (more path length
in the CAL);

I more pronounced at very high
energy (above 100 GeV);

I behavior above 60◦ off axis
irrelevant (no acceptance
there).
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Validation of the IRFs

Luca Baldini (INFN and UniPi) Fermi Summer School 2012 21 / 33



Validation data samples
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I We have plenty of flight data for validation purposes:
I different sources and background subtraction methods allow to

extract clean photon samples across most of the LAT phase space.
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Effective area validation

I There is no astrophysical source whose flux is perfectly known.

I But the effective area is essentially a measure of the selection
efficiency:

I can study the efficiency cut by cut;
I (remember: this includes all the selection steps: from triggering and

filtering to the definition of the event classes).

I Compare the cut efficiency on Monte Carlo and flight data sets.

I Also: devise and perform consistency checks:
I e.g., do events split themselves between front and back as predicted

by the Monte Carlo simulations?
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An important consistency check
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(d) Front-converting

I Fraction of events converting in the front section of the TKR
relative to the MC prediction:

I sensitive to possible inaccuracies in our description of the detector
materials and geometry.

I This is one of the most significant discrepancies observed when
comparing flight data with Monte Carlo simulations;

I and the most important piece of information for estimating the
uncertainties of our effective area.
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Effective area validation
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I Summary of our understanding of the effective area.
I Below 100 MeV the worsening of the energy resolution, coupled with

the steep falling of the effective are make the effect of the energy
dispersion potentially noticeable.

I Note that this is just an error envelope:
I no information about what type of deviation we might expect within

the uncertainty band.

I Point-to-point correlations?
I Yes: strong correlation on energy scales much lower than half a

decade (look at the previous slide).
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PSF validation

I In many respects easier than Aeff : we have point sources at known
(from other wavelengths) locations:

I most notably pulsars and AGNs;
I which is what we use to derive the in-flight PSF;
I caveat: in some cases a deviation from a point source (e.g., a halo)

is the physical effect we are searching for.

I Compare the measured 68% and 95% PSF containment radii for
selected point sources with the PSF parametrization:

I do it for on-axis and off axis events: this tells you how much of the
PSF richness we are really capturing in our representation.

I Remember: by default you are using a PSF parametrization
averaged over the LAT field of view:

I for short-time observations this might be an issue!
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Energy measurement validation

I Two very different aspects of the validation of the energy
measurement:

I energy dispersion (event by event fluctuations around true value);
I absolute energy scale (common systematic error).

I Suppose you are studying a strong γ-ray line:
I the uncertainty in the energy dispersion determines how the line

looks smeared in the detector;
I the uncertainty in the absolute energy scale determines the offset in

the peak position.

I This is where things get really tricky in terms of in-flight validation:
I there is no astrophysical γ-ray source with a sharp feature at a

perfectly known energy.

I We do have many pieces of information anyway: ground tests, beam
tests, measurement of the CRE geomagnetic cutoff.

I We understand the energy resolution at the ∼ 10% level. . .
I negligible in most practical situations.

I . . . and the absolute scale within +2/− 5%.
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The geomagnetic rigidity cutoff

I The power-law spectrum of primary CRs is effectively shielded by the
magnetic field of the Earth;

I the effect depends on the position of the LAT across the orbit.

I The cutoff energy can be predicted by means of a model of the
magnetic field and a ray-tracing code:

I several calibration point between ∼ 5 and ∼ 15 GeV.
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Propagating systematic uncertainties.
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Aeff bracketing functions

I Scale Aeff by the product of the relative error ε(E ) = δAeff (E)
Aeff (E) (see

slide 25) and an arbitrary bracketing function B(E ):
I A′eff (E , θ) = Aeff (E , θ) · (1 + ε(E)B(E)) .
I Creating modified Aeff curves is as easy as opening the Aeff FITS

files, doing some multiplications and saving new files.

I The most appropriate choice of the bracketing function depends on
the quantity we’re interested in:

I B(E) = ±1 maximizes/minimizes Aeff within its uncertainty band
leaving the spectral index ∼ unaffected.

I Note: the public Galactic and isotropic diffuse emission models are
fit to the data using the standard effective area tables:

I need to rescale the diffuse models by the inverse of B(E) to ensure
the expected numbers of counts are unchanged.

I Basic idea: repeat the analysis with a family of modified Aeff curves
and see how the measured quantities change:

I use the maximal changes to estimate the systematic errors.

I On a separate note: modified IRFs can be used with gtobssim too.
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Aeff bracketing function example
Maximizing the effect on the spectral index in a power-law fit
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I Use a function that changes sign at the pivot (or decorrelation)
energy (i.e., the energy at which the fitted index and normalization
are uncorrelated):

I for example B(E) = ± tanh
(

1
k

log(E/E0)
)
;

I k = 0.13 corresponds to smoothing over twice the LAT energy
resolution.
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PSF and edisp bracketing functions

I The PSF and energy dispersion being probability density functions,
using bracketing IRFs is more tricky;

I you have to modify the appropriate parameters in a self-consistent
way to generate families of reasonable IRFs;

I (e.g., wider or narrower PSF and energy dispersion, offset in the
absolute energy scale).

I the way the IRFs are parametrized and stored in the FITS files of the
IRFs is not always optimal for that.

I But it can be done with a little bit of thought!

I Exercise: Evaluate (with paper and pencil) how an error ε in the
absolute energy scale affects the measured flux for a power-law
spectrum assuming Aeff is constant.
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Conclusions

I The LAT is a complicated instrument:
I performance figures vary a lot across the phase space;
I there’s a lot going on behind the scenes as you run a typical science

analysis.

I The LAT team has put a huge effort into understanding the
instrument and is continuing to do so:

I the IRFs are being regularly updated and released to the public.

I Propagating the systematic uncertainties to high-level science
analysis can be tricky:

I Wouldn’t it be nice if it was possible to produce a table with all the
numbers that you need for your preferred analysis?

I Unfortunately that’s impossible: the answer can be given only on a
case-by-case basis.
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