
Extension of the PingER Project onto Mobile

Devices using Android Applications

Aayush Jain 1

Amity University
Noida, UP, India

aayush.2896@gmail.com

Prof (Dr) Abhay Bansal 5
Amity University

Noida, UP, India

abansal1@amity.edu

James David 2

Amity University
Noida, UP, India

jamesdavid.1997@gmail.com

Dr Les Cottrell 6
SLAC National Accelerator

Laboratory

Stanford, CA, USA

cottrell@slac.stanford.edu

Rishabh Bansal 3

Iowa State University
Ames, Iowa, USA

rbansal@iastate.edu

Prof (Dr) Bebo White 7
SLAC National Accelerator

Laboratory

Stanford, CA, USA

bebo@slac.stanford.edu

Prof (Dr) A. Sai Sabitha 4

Amity University
Noida, UP, India

assabitha@amity.edu

Abstract – PingER was developed by the SLAC National

Accelerator Laboratory (SLAC) as a tool for Internet

End-to-end Performance Monitoring. It monitors over

700 sites worldwide, and aims to measure the round-trip

time, loss jitter etc. for packets travelling between nodes

on the internet. The PingER MeasurementAgent can be

deployed on servers running Linux, however these servers

have limitations. The fixed-line servers currently in use

are not mobile and require a continuous power source.

The extension of the PingER project to the Android

ecosystem brings advantages like greater power

efficiency, ease of installation, maintenance, and better

affordability to the table. The Android application

supplements the Measurement Agents set up at about 40

locations around the globe.

Keywords – PingER, Android, FTP, RegEx, Automation ,

Asynchronous Computing

Introduction

The SLAC National Accelerator Laboratory’s (SLAC’s)

Internet End-to-End Performance Measurement (IEPM)

Group backed by the US Department of Energy aims to gain

valuable insights into the performance of the Internet. This

research-implementation targets replicating the entire

PingER workflow into a portable Android application. This

allows Android devices to act as remote nodes to any

specified measuring agent which ultimately allow for internet

end-to-end monitoring. The Android app acts as a

Measurement Agent (MA), sending out pings to a SLAC-

hosted list of beacons every half hour, and recording their

responses. This data is saved and sent to the PingER archive

at SLAC for use in multiple projects.

When it was started in 1995, the primary goal of PingER was

to "keep tabs on how parts of the network were performing

and root out any problems" so as to know how the Internet

was performing, identify problems, and apply solutions.

Now, it has expanded to something bigger – identify and

assess the ‘digital divide’ across different regions of the

world from Sub-Saharan Africa to the Middle East, from

South America to Central and South Asia. This ‘digital

divide’ refers to economic and social disparity with regard to

access to information and communication technology. The

project has various subdivisions such as PingER Deployment ,

Analysis, Operations, Databases, Validation data and toolbox

that further open up multiple avenues like informed decision

making.

Literature Survey

PingER:

PingER is a Project led by the SLAC National Accelerator

Laboratory and developed by the IEPM group in 1995. It is

short for Ping End-to-End Reporting. The framework for the

PingER project is based on the ping utility, that is available

on most Internet connected hosts. A ping involves sending an

Internet Control Message Protocol (ICMP) echo request to a

specified remote/target node which responds with an ICMP

echo reply. It is also optional to send a data payload in the

request which will be returned in the reply. The round-trip

time (RTT) is reported; if multiple pings are dispatched, most

implementations provide statistical summaries. PingER uses

this data to assess the quality of the internet in various

regions, understand performance, and identify problems. For

each remote node specified in a configuration file:

• PingER sends a single ping with a 56-byte payload,

• followed by up to 30 pings with 100-byte payloads at

1 second intervals to the remote node, until 10

response are received.

• This is followed by sending up to 30 pings with a

1000-byte payload, also at 1 second intervals to the

remote node until 10 responses are received.

Android:

Android is a mobile operating system developed by Google.

It runs on a modified version of Linux adapted primarily for

touchscreen mobile devices. Android’s source code has been

made open source by Google, a member of the Open Handset

Alliance. It is used on more than 2 billion active devices

worldwide by more than 1 billion users and has a huge

community support. Android enables developers to create

compelling mobile applications that leverage the modern

capabilities a handset has to offer, so as to create richer and

more cohesive experiences for users. This was one of the

main reasons why Android was the platform of choice for the

implementation of this project to create a robust Java-based

application.

mailto:aayush.2896@gmail.com
mailto:abansal1@amity.edu
mailto:jamesdavid.1997@gmail.com
mailto:cottrell@slac.stanford.edu
mailto:rbansal@iastate.edu
mailto:bebo@slac.stanford.edu
mailto:assabitha@amity.edu

RegEx:

A Regular Expression (RegEx) allows a programmer or a

user to define how a computer should search for a certain

string in lots of text. It helps match, locate, and manage text

while utilizing advanced pattern matching. A majority of

programming languages provide native support for RegEx

via standard libraries, which can further be expanded by using

extended libraries. Regular Expressions mean the specific,

standard textual syntax for pattern representation for text to

conform to. RegEx uses ‘metacharacters ’ to define the search

term. A text-directed RegEx engine walks through the subject

string, attempting all permutations of the regex before

advancing to the next character in the string.

FTP:

The File Transfer Protocol (FTP) is a standard network

protocol that is used for the transfer and storage and retrieval

of files between computers over a TCP/IP connection. It

utilizes the client-server architecture. It allows authenticated,

as well as anonymous connections. For secure transmission

that protects the username and password, and encrypts the

content, FTP is often secured with SSL/TLS (FTPS) or

replaced with SSH File Transfer Protocol (SFTP). The

project utilizes the FTP Protocol to send the PingER output

generated by the apps in the Android MA hosts to a proxy

server at a PingER archive site, such as the one at Amity.

Existing Model

The project as implemented by Rajappa, Sampson et al

involved running the Perl scripts as supplied by SLAC on a

rooted Android Device. This was a relatively low-effort and

high-maintenance approach to test out the feasibility of

Pinger on Android.

The model was found to be largely unsuccessful because of

the intensive effort required to set it up in the first step. For

starters, the proposed and built application would only

function on rooted devices, and the majority of the Android

Devices are not rooted, i.e., they do not have SuperUser

Access to the device. Freshly purchased devices do not

provide root access to the users, and users need to flash their

device to gain root access. This is not feasible for a majority

of users as their mobile devices are not rooted by default.

Figure 1 Graphical Representation of Old Model

The model employed the following approach:

1. Root Android Device, and gain access to system

commands and directories.

2. Install BusyBox and any Terminal Emulator app.

3. The Perl Scripts as supplied by SLAC were made to

run in the terminal (in the background) with a frontend

of a Java App UI which would run the required

commands on the appropriate user inputs.

4. The application had the beacon list hard-coded, and

thus auto-updating it was not possible. Only the

beacons as hard-coded would get pinged.

5. The application was not set to auto-start on device

power on. Even the pinging function had to be done

manually.

6. The output log generated in txt were available to un-

rooted users too on external storage, making it

susceptible to tampering.

Implemented Model

The proposed model revolves around the implementation of

data collection through PingER solely over Android, which

replicates the earlier model of Linux executing the pinger.pl

Perl Scripts as supplied by SLAC. A prototype was developed

for the existing model which wasn't efficiently feasible and

had certain drawbacks and inefficiencies. We’ve proposed

and implemented a model which sports much more

accessibility and has other features too.

Figure 2 Graphical Representation of Newer Model

To overcome the shortcomings of the previous model, a new

modular application was written from scratch in Java. The

new model also runs on non-rooted Android devices as well.

After booting the Android MA (measuring agent), the

Android PingER App is programmed to automatically launch

in the background on device startup. The app continues to run

unless the Android MA experiences a power failure, or when

the MA is turned off for some unknown reason, or when the

system restarts with a deleted cache, regardless of the error.

This service will keep on executing even when the

application is closed. This has been done to ensure a

procedure does not fail to be invoked. The data generated by

the application is transferred to the Server hosted at Amity

University MA at a certain time interval (every day at 9am

IST) using the FTP protocol.

The new model employs the following approach:

1. No root is needed for proper functioning of the

application.

2. On Device boot, the application launches itself in the

background to run services like updating beacon

lists, and pinging them.

3. The beacon list is now dynamically updated

automatically from the list hosted by SLAC. The

update occurs at least once a week, and this list is

synced locally.

4. This local beacon list is pinged automatically once a

day. Manual pings can be done as and when needed.

5. The output from the ping commands is parsed using

RegEx and written to a date-wise file.

6. This generated txt file has now been shifted to the

App’s dedicated internal storage that cannot be

tampered by any user.

7. A new txt file is generated every day, and outputs

for each day are appended only to that day’s txt.

8. FTP has been chosen as the protocol of choice for

the transfer of generated txt files from the Android

App to the MA Amity Server acting as a proxy

between the app and SLAC.

9. Files that have been created and not transferred over

FTP are kept track of in the App so that upon the

next sync, only un-synced files are uploaded. This

also allows us to manage older files which can now

be safely deleted so as to use space conservatively.

Methodology

Subsequent to the boot up of the Android MA, the Android

Application PingER is programmed to run automatically in

the background and keeps running unless the Android MA

suffers from a Power Failure. If the MA shuts down due to an

unknown reason during any moment of any process , it will be

restarted irrespective of the error with a cleared Cache. This

service runs even when the application is closed. This was

done to ensure a procedure i.e. the data being generated by

the application is transferred using the FTP Protocol to the

SLAC anonymous inbound FTP server at a specific time

interval. Thus, at every iteration of the time interval per week,

the generated pinged data is allowed to be pushed into the

SLAC FTP server automatically.

In the previously proposed models, there were several

concurrently running threads which increased the Android

workload and CPU utilization; and thus, resulted in a delay in

fetching the Beacon List. This was a major drawback in the

older versions of Android phones with fewer cores. To

overcome this, we have been utilizing only two services

which are running consecutively: one, with instructions

containing methods to check the internet data availability ;

and the other, an asynchronous task involving two other

methods. These methods establish the connection, download

the pinger.xml configuration file and parse through it to

extract the beacon list. Previously, this functionality of

Android PingER was implemented for a small number of

beacons which were hardcoded.

Prerequisites (A-Synchronised Instructions):

There may be a successful internet data connection which the

device is accessible to, If the internet data exchange is not

applicable or not working due to reasons such as No Network

or No Data Connection Availability, then the application uses

the previously parsed pinger.xml configuration file.

A-Synchronous Task:

Prior to parsing the pinger.xml file to extract the beacons, we

need to download the file itself from the SLAC URL (

http://www-iepm.slac.stanford.edu/pinger/pinger.xml).

The application gets access permissions to the Android root

directory and checks if there exists a folder with the name

PingER, if not found then it creates a new directory with

name PingER.

The task of downloading the pinger.xml file containing the

TAGS for the beacons with their IP names and addresses is

then executed. Then the downloaded XML file presently in

the buffer is appended to a file locally. This task of

downloading the XML is executed every week to ensure an

up to date list.

Figure 3 Automated Workflow for Android Application

Step 1: Collection/Pinging

Collection: Upon the successful download of the

pinger.xml file, it goes through the parsing phase where the

information regarding the beacons such as Name, IP address

are extracted. This information is necessary for further

processing phase i.e. Pinging. The parser we are using is SAX

Parser. This is very efficient for Android as it does not load

the complete document into memory, rather it takes

statements into buffer and checks for tags such as starting tags

and ending tags to get the required the data from the xml and

http://www-iepm.slac.stanford.edu/pinger/pinger.xml
http://www-iepm.slac.stanford.edu/pinger/pinger.xml
http://www-iepm.slac.stanford.edu/pinger/pinger.xml

discarding other tags. Additionally, the beacon list can be

refreshed manually using the swipe-to-refresh feature.

Pinging: The collected beacon hosts are passed through

the ping command: pingCmd = "ping -n -c 10 -w 30 -i 1 -s

100" + host; where c is number of pings it awaits a response

from, w is the time to wait for a response in seconds,, i is the

interval between pings, and s is the packet size for the pings.

Table 1 Parameters recorded by Android Application

S.No Parameter Description

1
Monitor_Host_Nam

e
Name of the host

2 Monitor_Addr IP address of the host

3 Remote__Name Name of remote site

4 Remote_Addr IP address of the remote site

5 Bytes Bytes of data sent

6 Time Round Trip Time

7 Xmt Number of packets sent

8 Rcv Number of packets received

9 Min
Minimum response time for

packets in ms

10 Avg
Average response time for

packets in ms

11 Max
Maximum response time for

packets in ms

[12..(12
+Rcv)]

Seq[1..Rcv]
Sequence numbers of
individual responding pings

[(13+Rc

v)..(13+
2xRcv)]

RTT[1..Rcv]
Round trip times of

individual responding pings

Step 2: Parsing, Storing

The host name for the generating outputs is “pinger-

and1.amity.edu”. Certain tags such as hostIP, Time Stamp,

Packets sent, Packets Received are involved in the output.

The outputs generated from the ping command were fetched

using RegEx pattern matching and stored in a file locally

currently named as data.txt in the MA. If the file already

exists for that particular iteration of time in a specific week,

then the latest generations will be appended to the existing

file or else a new file will be created and data will be

appended into the same.

The functions used in RegEx to parse and format the output

are:

Table 2 Functions used for Parsing in Android Application

Function Pattern Purpose

getHostIp() None

This function is used to fetch

the IP of the host using the

inbuilt functions of Android

using the WiFi manager class

parse-Group-

Timestamp()

“ \\[([0-

9]{10})\\]

PING”

This function searches for the

Unix timestamp for the ping

command within the group-
Timestamp class

parse-

GroupIP()

“ \\(([0-

9,\\.]+)\\)”

This function is used to get
the IP address of the group

that is being pinged.

parse-Group-

URL()

“ PING\\s+
([\\w,\\.]+)

\\s+\\(“

This function parses the entire
URL of the group and returns

a string containing the host

that is being pinged.

parse-Group-

Bytes()
None

This function determines the
number of bytes that were

sent. It is done using a two-

stage pattern comparison to

get the string

getNumberOf

PacketsSent()

“ \\d+

packets”

This function is relatively

straightforward and finds the

number of packets that were

sent using the pattern

getNumberOf

PacketsReceiv

ed()

“ \\d+

received”

This function acts similarly as

the above method to collect

the packets received

countICMP()
“ icmp_seq

=\\d+”

This function is used to

determine the number of

ICMP sequences sent

timeOFEachIc

mp()

“ time=\\d

+”

This returns a string value of

the time of the ICMP

sequence

parsePingStati

stics-

MinAvgMax
Mdev()

“ ping\\s+st

atistics\\s+

[\\-

]+\\[([0-
9]{10})\\]

”

This function extracts the

max, min, average and the

Mdev for the ping command

and returns a string array for
each Min, Max, Avg and

Mdev respectively.

The query used to ping the beacons is:

pingCmd = "ping -n -c 10 -w 30 -i 1 -s 100" + host.

The output of the ping command, viz. the data received from

pinging the beacons is of the form:

Table 3 Data Written to Output File after Regex Processing

pinger-and1.amity.edu 192.168.0.100 www.andi.dz

213.179.181.44 100 1537559939 10 10 193.975

207.584 255.100 1 2 3 4 5 6 7 8 9 10 198 255 202

207 209 202 200 193 201 204

pinger-and1.amity.edu 192.168.0.100

linhost2.utic.net.ba 195.130.35.104 100

1537560843 10 10 184.845 187.625 190.790 1 2 3

4 5 6 7 8 9 10 184 186 187 187 186 187 190 187

188 189

pinger-and1.amity.edu 192.168.0.100 megalan.bg

95.111.55.250 100 1537560853 10 10 184.566

190.618 193.917 1 2 3 4 5 6 7 8 9 10 184 188 193

188 191 190 190 193 191 191

pinger-and1.amity.edu 192.168.0.100

www.carnet.hr 161.53.160.25 100 1537560862 10

10 164.157 173.023 175.944 1 2 3 4 5 6 7 8 9 10

170 164 175 174 173 173 175 173 173 173

Step 3: Send to Server

The FTP protocol is being used to transfer the data from the

Android agent to the Amity Proxy Server which enables the

load generated by the web-server to be differentiated into

three fragments:

1. FTP Client Authentication: The device requesting to

acquire the service of the FTP is authenticated

anonymously, tested in a local server built up with

address “ftp://192.168.0.101” and port number 2121. If

the client does not authenticate or has any issue

regarding the connectivity to the internet, then the daily

upload of the file is rescheduled and is set to upload on

the next day along with the generated data.txt for it.

2. Check Current Repository: The application segregates

the generated data.txt files for the current date from the

rest and checks if there are other files which weren't able

to be uploaded to the Server. All the files to be uploaded

are flagged prior to the process.

3. FTP Upload To Server: Finally, the files are uploaded

to the server if the above steps are executed

successfully, else the application will wait for the next

day for the AlarmManager Service to generate an alarm

which would enable the FTP service to be executed once

again. If the upload process of the files is successful,

then they are set to delete automatically. If the process

is unsuccessful, then the batch of uploaded files will be

transferred in the next FTP service. Once the batch has

been uploaded it will be deleted.

Figure 4 Manual Workflow for Android Application

Miscellaneous:

Subsequent to the Device Booting, a notification service is

processed which gives the controls to AlarmManager (AM)

service. The AM service sets up an alarm for daily uploads

and weekly beacon list updates.

All the data is being stored in device system storage. The

application folder is located at: /data/data/"your_package_

name".

This folder can be accessed only using the DDMS for your

Emulator, Since this can't be accessed on a real device unless

you have rooted it, it would promote security to the profiles

generated and won’t be feasibly available to illegal use.

Conclusion

The porting of the PingER application onto Android-based

mobile devices has been a successful project. The targets set

for the application such as ease-of-access, maintainable code,

scalable architecture, small foot-print and viable scalability

have been achieved. This latest iteration of the project

overcomes the hurdles of the previous iteration of PingER on

Android wherein the Perl Scripts were run on an emulator on

a rooted Android Device. The Android App can now

dynamically ping the beacons as and when updated by SLAC,

parse and store their output, and send the generated txt files

on a daily basis to the server via FTP – all in the background

requiring minimal user-intervention. This approach allows

individuals with minimal technical knowledge to contribute

to the PingER Project with little to no effort which will be a

huge boon to the data collection team at SLAC. This, in turn

will be a greater boon to the data analysis team as the number

of android-based measuring agents increase and provide

more diverse data. This app can now be distributed to people

around the world for collecting data.

On wired measuring agents , i.e. servers with a dedicated

fixed-line internet connection, there may not be much

variation in the quality of data recorded over time. However,

when the PingER Project is expanded to wireless Measuring

Agents (Mas) such as Android Devices , which rely either on

either mobile data or WiFi for Internet connectivity, the

results are sure to be interesting because of the diversity

wireless measuring agents bring to the table.

The performance improvements recorded in this new

iteration of the Android application have been exemplary .

And there is still more to achieve. The possibilities arisen by

porting PingER to Android are numerous. This allows the

project maintainers to either run the Android Application in

conjunction with the existing project as an extension; or as a

separate branch parallelly after some modifications as

needed.

Future Proposals

The Extension of the PingER Project onto Mobile Devices

using Android has opened up a world of opportunities for

adding up new measuring agents at the click of a button. A

one-click installation procedure now enables SLAC

researchers around the world to start pinging beacons,

recording the output and conveying the logs to the proxy

server via FTP with just one button press, something which

has also been automated to run as a service in the background

thereby requiring minimal or no human effort now.

Currently there are two possible routes for future expansion

of the project:

1. Extend the capability of the current application: This

method requires modification of the pinger2.pl script so

as to spin up a dedicated FTP Service too. This allows the

existing hosts to open up their ports to receive incoming

files from various deployed Android based MAs. On the

client side, i.e. the Android App, the user can be presented

with a choice to select which ArchiverMA they want to

associated with during signup; so as to send the generated

txts to a selected Archiver. This method has the only risk

for any bad actor to exploit the open FTP servers in case

authentication is not used. To overcome this issue, the

pinger2.pl script needs to add a file monitoring service

too, which blocks all incoming files that are not in txt

format. Because open FTP servers can act as a harbor for

illegal files in formats ranging from exes, jpegs to even

mp4s. The monitoring service can parse through received

text files to see if they are in a pinger-compliant format;

and the rest can be flagged or simply discarded.

Another possible drawback is that individual hosts cannot

be identified to track which file was sent by whom. To

overcome that SSH or other authentication can be used,

but that again is a trade-off with ease of access. Non-

password-based authentication may not feasible because

adding and removing public SSH keys onto the keyrings

must be done manually or in another secure fashion. Our

best bet in that case must develop a proper REST API, and

forego the FTP Services and ease-of-access as well. This

can thus act as a more centralized model wherein the

server lies with SLAC, and every other measuring agent

or application in the world sends data to SLAC servers in

US. This brings us to our other possible route for future

expansion.

2. Firebase Application: The need of a proxy server can be

completely eliminated by shifting to a cloud-based

architecture for managing files. Instead of SLAC pulling

in the generated txt files from MAs around the world, the

MAs can themselves push these files to a centralized

application server hosted on the cloud; which makes it

easier for SLAC to access files as per their need.

Considering the great degree of integration capabilities

Google offers with its products, the flexibility arising

from using the Google Cloud Platform would be

pronounced. Google’s Firebase is a mobile and web

application development platform that provides

developers with a variety of tools and services to help

develop high-quality apps, that can scale easily as per

changing demands, and which delivers 99.99% uptime.

The Firebase SDK allows mobile app developers to

quickly add critical and reliable functionality to their

applications in a short time. The recommended option

here would be to leverage the Cloud Storage for Firebase

that allows robust uploads and downloads onto the

Google Cloud Storage buckets. Apart from the user

authentication module that comes bundled with Firebase,

developers can also declare file security parameters so as

to allow only certain filetypes to be uploaded. Having all

user uploaded files in one place will then enable SLAC to

access and process files as and when needed. Server-side

processing can be done on the Google Cloud Platform as

well, thereby eliminating any need for SLAC to maintain

its own physical infrastructure. This form of

implementation can be highly beneficial in any kind of

region of the world, also including remote places, like

deep inside tropical rainforests, or places that have

recently been hit by a natural calamity. As this

implementation model is not dependent on any local

measuring agent, the android mobile apps can directly

deliver data to SLAC over any form on internet

connection in minimal time with high reliability.

Although these suggested models have a grand vision for

execution of SLAC’s PingER Project, they are viable

nonetheless. Moving over from legacy code and concepts

might actually provide a huge boost to the variety of data

being collected for IEPM by SLAC’s PingER Project.

Nevertheless, this accomplished implementation is good

enough to run in conjunction with the present project so as

not to lose any form of functionality; and at the same time not

making a trade-off with either functionality or ease-of-access.

References

[1] W. Matthews and L. Cottrell, "The PingER project: active

Internet performance monitoring for the HENP community,"
IEEE Communications Magazine, vol. 38, no. 5, pp. 130-136,

May 2000.

[2] L. Cottrell and W. Matthews, "Measuring the digital divide

with P ingER," SLAC, no. SLAC-PUB-10186, p. 4, October

2003.

[3] S. Ali, L. R. Cottrell and A. Nveed, "PingER Malaysia-

Internet Performance Measuring Project: A Case Study,"

2015.

[4] S. M. Khan, L. R. Cottrell, U. Kalim and A. Ali, "Quantifying

the Digital Divide: A Scientific Overview of Network
Connectivity and Grid Infrastructure in South Asian

Countries," in 16th International Conference on Computing

in High Energy and Nuclear Physics (CHEP 2007), Victoria,

Canada, 2007.

[5] L. Cottrell, M. Warren and C. Logg, "Tutorial on internet
monitoring & PingER at SLAC," 2000. [Online]. Available:

http://www.slac.stanford.edu/comp/net/wan-

mon/tutorial.html.

[6] L. Cottrell, "How Bad Is Africa’s Internet?," IEEE Spectrum,

29 January 2013.

[7] L. Cottrell, C. Logg and J. Williams, "PingER History and

Methodology," in 2003 Round Table on Developing

Countries Access to Scientific Knowledge October 23-24,

2003, Trieste, Italy, 2003.

[8] R. Sampson, S. Rajappa, A. . S. Sabitha, A. Bansal, B. White
and L. Cottrell, "Implementation of P ingER on Android," in

7th International Conference on Cloud Computing, Data

Science & Engineering - Confluence, Amity University,

Noida, India, 2017.

[9] W. Matthews, C. Granieri and L. Cottrell, "International
network connectivity and performance, the challenge from

high-energy physics," no. SLAC-PUB-8382, March 2000.

[10] L. Cottrell, "Proxy support for P ingER - Internet End-to-End
Performance Monitoring - SLAC Confluence," 2018

September 2018. [Online]. Available:

https://confluence.slac.stanford.edu/display/IEPM/Proxy+su

pport+for+PingER.

