Proc. of the 2017 IEEE Region 10 Conference (TENCON), Malaysia, November 5-8, 2017

BIND: An Indexing Strategy for Big Data
Processing

Adib Habbal', Fatima Binta Adamu', Suhaidi Hassan'!, R. Les Cottrell?, Bebo WhiteZ, Mustafa Kaiiali’,
Ahmad Samer Wazan®*

InterNetworks Research Laboratory, School of Computing, Universiti Utara Malaysia, 06010 UUM, Sintok, Kedah, Malaysia.1
SLAC National Accelerator Center, CA 94025, USA? | Queen’s University, Belfast, UK 3 | Paul Sabatier University, Toulouse, France*

Abstract—With the huge amount of data continuously accumu-
lated and shared by individuals and organizations, it has become
necessary to meet the emerging processing and information
retrieval requirements associated with these large volumes of
data. This could be achieved by indexing the data sets and reduc-
ing heavy computational overhead accustomed to most current
indexing strategies during processing of very large amounts of
data sets. This study proposes a novel Indexing strategy called Big
Data INDexing Strategy (BIND), using a concept of high perfor-
mance parallel computing. BIND supports parallel distribution
of data and performs processing in a MapReduce fashion. To
develop the BIND strategy, Ian Foster’s task-scheduling concept
for parallel processing is applied. The proposed indexing strategy
was first tested on a 2-node cluster environment where varying
sizes of datasets were used to note if the performance improves
or declines as the size of the data increases. Subsequently, it
was tested on a 3-node cluster to note the performance when
the number of computation resources are increased. The results
demonstrates that BIND minimizes the processing and query time
as compared to the current strategy. The findings have significant
implication in efficiently managing Big Data and facilitating data
processing and information retrieval for users and organizations
that manage Big Data.

Index Terms—Big Data Analytics; Indexing Strategy; MapRe-
duce; Information Retrieval

I. INTRODUCTION

Big Data is a term used to describe very large data sets
that are of different forms or structure (complex), generated
at a very high speed, and cannot be managed by traditional
database management systems. This definition explains the
three (3) main characteristics associated with Big Data: vol-
ume, variety and velocity (3Vs), and the value that can be
extracted from it is seen as a fourth characteristic (4V’s) [1].
Big Data is sourced from many end devices such as Personal
Computers (PC), smart phones, sensors, Radio Frequency
Identification (RFID) devices, monitoring devices, etc. Also,
online applications such as social networks and applications
that involve video streaming are great sources that generate
Big Data.

According to Zhou et al. in [2], the total size of data
generated will surpass 7.9 Zettabytes (ZB) by the end of 2015,
and predicted to reach 35ZB in 2020. Significant interest have
been taken in Big Data lately — this is due to insights or
great value that can be acquired from huge amounts of data
sets, which can be useful in decision making for businesses
or organizations. Cisco related that organizations such as
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Facebook, Yahoo, Google, Twitter, etc., accumulate Big Data
and retrieve information for analysis and decision making [3].
The Internet of Things (IoT), monitoring tools, and lots of
other devices used by organizations for business operations,
also accumulates data to enable analysis, information retrieval,
and decision making. These operations are becoming difficult
to perform because data keeps increasing in volume as time
passes by. Current Relational Database Management systems
(RDBMS) were built with a scale in mind and for structured
data. Hence, they cannot handle processing and information
retrieval on very large amount of unstructured data (Big Data).
Yet, International Data Corporation (IDC) predicts that the
global Big Data will multiply 50 times in the next decade
[4], which suggests the continues growth and accumulation
of unstructured data. This should be met with efficient pro-
cessing strategies capable of handling such huge amounts of
unstructured data.

Numerous indexing strategies have been proposed [5] (from
existing indexing strategies) based on the use of sophisticated
tools that can handle the growing amount of data as a solution
to the problem. First, indexing strategies can be said to be a
non-polynomial process as each relates to the problem it solves
[6]. Different Indexing approaches are applied in different
domains and on different data types. A popular means of
processing Big Data is by indexing using the MapReduce
application [7]. MapReduce sorts data sets according to key-
value pairs and stores them in an indexed manner. Indexing
of data sets facilitates data storage and information retrieval.

This study proposes a solution that expedites Big Data
manageability by applying lan Foster’s task-scheduling con-
cept for parallel processing to the MapReduce framework.
It also highlights some popular indexing strategies used for
Big Data management and exposes the potentials of each as
used in previous studies (Section II). Section III discusses and
explains the concept of the proposed BIND strategy. Section
IV provides an algorithm for the BIND strategy. Experimental
analysis and performance evaluation are presented in Section
V, and then Section VI concludes the paper.

II. RELATED WORK

The growth of data and accumulation of complex data
collections has become a challenge in Big Data management,
specifically, processing and information retrieval [8]. A solu-
tion to this is in designing indexing strategies to ease in the
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Figure 1. MapReduce Phases

retrieval of data items. In general, indexes or indices are a
list of tags, names, subjects, etc. of a group of items which
references where the items occur. With this, Big Data indexes
can be said to be a list of tags, names, subjects, etc. of a
dataset which references where data can be found. An indexing
strategy is the design of an access method to a searched item,
or simply put, an index. It constitutes all the steps that leads
to the creation of indices.

Complex data are collected with metadata that describes
their contents. Such datasets can be queried using the metadata
of the contents. Instead of searching the whole database (which
can be time consuming), a more efficient approach is to search
the appropriate group(s) relating to the query. This results
in a decrease in information retrieval time, since the search
process considers only the content of a specific group(s).
Hence, studies on the design of indexing strategies to ease Big
Data managebility has become a necessity. Several works have
proposed indexing strategies by improving or using existing
indexing strategies such as the B-tree, the R-tree, the hash
indexing, the inverted indexing strategy, and so on, using the
MapReduce framework. Utilizing the MapReduce framework
to improve Big Data indexing means improving one or more
of the four (4) phases that results in the creation of indices.
The phases as illustrated in Figure 1 includes:

Files Input: Files are submitted to the Hadoop Distributed
File System (HDFS), which serves as a mechanism for re-
ceiving inputs for MapReduce applications. Hadoop MapRe-
duce supports numerous file formats; Sequence- Filelnput-
Format, NLineInputFormat, FixedLengthInputFormat, TextIn-
putFormat, etc. The InputFormat is used to define how data
will be read into the mapper instances. A user can define an
InputFormat implementation to format the data or input to be
programmed based on personal or organizational requirements.
In Inverted Indexing for instance, lines of text files are read by
the default TextInputFormat. In the current indexing strategies,
the byte offset per line read, is the key produced for each
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record. The content of the line is the value. The InputFormat
also divides the input file or data into fragments (called splits)
that will be fed into individual mappers as tasks. The InputSplit
is performed before the start of the MapReduce job. Hence in
a nutshell, InputFormat performs two tasks:

1) dividing the data sets into splits and allocating to map-
pers as jobs.

2) sub-dividing the splits (jobs) into records, which are
fed one after the other to the mappers as tasks. This
is achieved through the RecordReader class.

Mapper: The mapper takes one line at a time, and produces
key-value pairs by splitting the lines and sorting the texts. The
key is the unique representation of the sorted item(s) in the
data sets, and the value is the files in which the keys occur,
or the group of data sets in which the searched item can be
found.

Reducer: Reducer acquires the keys and list of values from
each mapper, combining the keys that conform to each other
and their corresponding values. A keyValue pair is emitted as
output upon search.

The phases or activities of the proposed BIND strategy is
similar to that of the current strategy. However, the current
strategies proposed in previous studies concentrate more on
the mapper and reducer phase with less consideration to
the InputFormat phase. For instance, the study by Zhang et
al in [9], used Latent Semantic Indexing (LSI) to design
an indexing strategies by eliciting the conceptual (semantic)
content of data sets (in this case, social media chats), and
establishing relationships between terms with similar contexts.
Their system categorized or indexed comments made by the
audience into audience favors, audience expectations, and the
shortcomings of the season (by extracting the meaning of each
comment), in the MapReduce phase. This makes it easier for
the director to make decisions towards the improvement of the
next season, and so on.

Tang et al.[10] also used the LSI in their design; like
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Zhang. They used the MapReduce to classify the data based
on the acceleration information, consisting of the position
information and the pure force. Hence, the prediction of
the next series (sequence) of motions was dependent on the
position informant and the pure force. Again, work on the
InputFormat phase was not reported.

Another study by Jaluta er al. [11] used the B+tree for
their design, and Gollub et al. [12] used the inverted indexing
strategy to index library queries as keys, and set of library
documents as values. Both studies concentrated on the mapper
and reducer phase. In the design of the BIND strategy, the
study sheds more light on the second phase, which is the
InputFormat. Specifically, it concentrates on how the splits
are sub-divided before being fed to the mappers (the Recor-
dReader). This is explained in the following section.

III. BIG DATA INDEXING (BIND) STRATEGY
OVERVIEW

The proposed strategy called Big Data INDexing (BIND)
strategy is designed on the MapReduce framework. MapRe-
duce operates on distributed computers and in a parallel
fashion. Some researchers have developed techniques, tools,
and algorithms for high performance distributed and parallel
computing. One of such known concepts is Ian Foster’s Task-
Scheduling concept [13]. It is a known fact that Scheduling
concepts have been applied in solving job/task assignment
related problems.

Hence, Ian Foster’s Task-Scheduling concept was applied
in the design of the BIND strategy. The concept submitted
that in parallel processing, processes that have completed task
execution should return to the master for further allocation of
task without waiting for other processes to complete task exe-
cution. This could be applied to processing of Big Data using
the MapReduce framework. As mentioned earlier, Big Data
can be processed or indexed in numerous ways, depending on
the type of queries to be performed on it. Hence, the design
of indexing strategies depends on the type of query that will
be performed on the data sets which conform to the sorting
of Key-Value pairs.

The design of indexing strategies also depends on four
(4) phases which have been highlighted in Section II above.
Previous studies have proposed designs that improve one or
more of the phases listed. Although, most of the related works
concentrate more on the mapper and reducer phase which is
where the actual KeyValue pair sorting occurs. With this, less
attention is paid to the input phase, which consists of the
InputFormat and the RecordReader. The current InputFomat’s
RecordReader divides the data sets into splits and assigns one
record to each individual mapper as a task. The RecordReader
assigns more tasks to the mappers simultaneously, after the
previous task has been completed. This is done until the data
sets have all been allocated to the mappers for processing. The
reducer finally collects these keyvalue pairs from all the map-
pers and combines them as output. This method successfully
indexes the data sets, resulting in easy information retrieval.
However, computational overhead which is accustomed to
larger data sets can be avoided if more attention is paid to
the InputFormat phase.
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Figure 2. RecordReader for the BIND Strategy

Tan Foster’s Task-Scheduling concept could be applied to
the way the records are assigned to mappers, hence, reducing
processing or task execution time (index creation time), and
consequently reducing the time it takes to retrieve information
from the data sets. Based on lan Foster’s task-scheduling
concept, the research employed the traditional way of feeding
data into the mapper (InputFormat and RecordReader) to
implement the proposed Indexing Strategy. The study concen-
trated on customizing the RecordReader, thereby allowing the
BIND Strategy to be implemented on records that have been
fed into the mapper as tasks. Mappers can receive as many
records as possible (as a task) depending on the amount of
computational resources available and other settings.

In implementing the BIND strategy, the mapper is set to
receive three lines or records from the RecordReader as a task,
instead of one line at a time as is accustomed in the traditional
or default TextlnputFormat. This is performed during the
design of the RecordReader. Each mapper with a completed
task, is assigned another task (sequentially) without waiting
for the other mappers as illustrated in Figure 2. While the
JobTracker (or ResourceManager) serves as the master from
Ian Foster’s concept, the TaskTrackers (a component of the
mapper), are responsible for conveying of tasks between the
RecordReader and the mapper.

The algorithm for the BIND strategy is presented in Algo-
rithm 1. It was implemented in all phases, with more emphasis
on the InputFormat (RecordReader) phase. The number of
input splits is dependent on the amount of available resources
(CPU cores and RAM). Logical and mathematical comparison
are tested against the data as they arrive. When the condition
is satisfied, data is indexed and stored. Efficient management
of splits before they get to the mapper phase, could mitigate
computational overhead. It is expected of the proposed design
to improve processing of Big Data by reducing the processing
time of data sets, thereby mitigating computational overhead.
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Algorithm 1 BIND Algorithm
if {
x #0
split x ;
}
where x = InputFiles
let
y = split
m = mapper
n = lines to process
t = task
t=012___,n
y=012__ _n
where ¥Ym Iy
if {
y #0
assign t;
}
Vm
if
t=20
t<n
t++
}
let
k = key or item to be indexed
v= value associated with key
l(v) = list of values

i=123___n
j=123___n
where j > i

do {
map (k;, v;)

sort (k;, I(v;) )
combine (k;, I(v;) )
reduce (k;, v;)
index k;

store;

IV. PERFORMANCE EVALUATION

In this section, we evaluate the BIND strategy and compare
it with the current strategy using Hadoop. The performance of
the BIND strategy will be evaluated using:

1) the processing time (index creation time) for varying
sizes of data sets, to note if the performance improves
or declines as the size of the data increases,

2) the processing time for varying number of computational
nodes, to note the performance when the number of
computational resources are increased, and

3) the query time for varying sizes of data sets, to check
wether the BIND strategy facilitates information re-
trieval despite the growth of data.

A. Experimental Setup

The experiment was conducted on a 2-node cluster, and then
on a 3-node cluster. Each node has four (4) processor cores and

4GB of RAM. All nodes run on the Ubuntu 14.04 operating
system, Hadoop 2.6.0, and Java version 1.7.0_79 64bit. Hive
1.2.0 was utilized for data query in the study. One node served
as master and also as a slave, and the others as slaves. HDFS
is used as the storage mechanism. The replication factor is
three (3) in HDFS. The block size is left as the default 64MB.
Each experiment is repeated five (5) times and the average
result reported.

PingER data [14], [15] was used to verify the efficiency
of the BIND strategy. Approximately, every 30 minutes the
PingER monitoring host goes through a list of target hosts.
For each target host one ping is sent with a 100Byte payload.
This is discarded since it is often delayed due to the priming
of ARP and DNS caches. This is followed by sending up to
30 100Byte payload pings with one second intervals between
the pings, until 10 responses are received or there is a timeout
of 30 seconds. This in turn is followed by sending up to 30
1000Byte payload pings with one second intervals between
the pings, until 10 responses are received or there is a timeout
of 30 seconds.

B. Data Set Analysis

We utilized the PingER analyzed and aggregated data where
each record contains the monitor and target and the relevant
metric for each hour of the day. The initial state of the data
used in the study was in a compressed form stored in flat file
formats. Also the size of the files were in bytes and kilobytes
(too small to be supported by Hadoop). Hence, needed to
be uncompressed and merged (preprocessed) in order to be
supported by Hadoop.

The preprocessing of the files (data set) was performed
using a shell script. The data sets were grouped into four sets
with varying sizes namely D1, D2, D3, D4, and populated
with data sizes of 325,650 tuples, 651,950 tuples, 982.150
tuple, and 1,302,600 tuples respectively. Another data set D,
was populated with 130,000 tuples and was used as the sample
data to test for configuration and program errors. Though, the
sample data is far from the size that Big Data is considered to
be, it is large enough for potential improvements to be noticed.

Examining the PingER historical log data, the fields are
delimited by spaces with the first two fields representing the
source address and the destination adress respectively. The
values (or dots in some cases) represent the metric value
(e.g. Round Trip Time in msecs), and the last two fields also
represents the source and destination name, further detail about
Pinger log data attributes can be found at [14], [15]. Using the
inverted indexing strategy, the pinged addresses were sorted as
key, and a wordcount was conducted to verify the performance
of the BIND strategy which was compared with the current
strategy.

C. Results and discussion

Tables I and II present the average result computed on
the index creation time (processing time) after running the
experiment several times on a 2-node and a 3-node cluster
respectively. The results were obtained using the same number
of splits in all cases.
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Table I
RESULTS OBTAINED USING 2-NODE CLUSTER

. Processing Time (s)
Data Set | Number of Splits Current Strategy i Proposed Strategy
D1 543 2516.6 2379.52
D2 835 3918.2 3724.14
D3 1013 4712.4 4112.8
D4 1181 5860.32 5146.3
Table II
RESULTS OBTAINED USING 3-NODE CLUSTER
. Processing Time (s)
Data Set | Number of Splits Current Strategy : Proposed Strategy
D1 543 1852.2 1797.6
D2 835 3128.5 2605.2
D3 1013 3703.96 3333.6
D4 1181 43444 3850.37

From Table I, the current strategy returns an average pro-
cessing time of 2516.6 seconds for data set D1, which is
greater than the processing time obtained from implementing
the BIND strategy on the same data set D1 (which is 2379.52).
This is observed for the other data sets as well, where a
processing time of 3918.2 seconds for the current strategy
is obtained against a processing time of 3724.14 seconds for
the BIND strategy (on the data set D2). A decrease in the
average processing time obtained from the proposed strategy
as compared to the current strategy implies that the proposed
strategy performs better than the current strategy in terms the
index creation time (processing time).

Figure 3 illustrates that using a 2-node cluster (small scale),
the time taken to process the data sets using the BIND strategy
is less than that of the the current strategy. This proves that an
increase in performance is obtained from the proposed strategy
as compared to the current strategy in terms of the processing
time. From Figure 3, it is also observed that the BIND strategy
maintains a better performance than the current strategy as the
data size increases. This proves the efficiency of BIND for
processing Big Data.

In Table II, the processing time obtained from implementing
the current strategy on the data set D1 using a 3-node cluster is
1852.2 seconds. Under the same condition, the BIND strategy
returns an average processing time of 1797.6 seconds on
the data set D1. For the data set D2, the current strategy
returns an average processing time of 3128.5 seconds which
is less than 2605.2 seconds, obtained from the BIND strategy.
The decrease in processing time obtained from the proposed
strategy implies that the proposed strategy still maintains a
better performance than the current strategy with an increase
in the number of nodes.

Figure 4 shows a comparison of the processing time be-
tween the current strategy and the proposed strategy using a
3-node cluster. It is observed that the BIND strategy produces
lower values as compared to the current strategy. This explains
that the performance of the BIND strategy does not decline
with increase in nodes. It also shows that the proposed strategy
still performes better than the current strategy when the
number of nodes are increased.

Figure 5 presents the results obtained from querying the
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Figure 4. Processing time using 3-node cluster

data sets. As the experiment was conducted on an offline
mode, querying the data set as they are processed will bear
no significance when comparing the retrieval time between
the BIND strategy and the current strategy; unlike on an
online mode where it is a known fact that faster index
creation time leads to faster availability of data for retrieval.
Moreover, the aim of testing for the query time is to verify
that the BIND strategy facilitates information retrieval and
maintains a consistent performance despite the growth of data.
Hence, the results obtained from querying the indexed data
sets is compared with the results obtained from querying the
unindexed data sets. For future study, it is recommended that
the experiment be conducted on an online mode to note the
performance of the proposed strategy in terms of information
retrieval as compared to the current strategy.

From Figure 5, the average time it took to retrieve infor-
mation from the unindexed data set D1 is 34.474 seconds
and 10.722 seconds from the indexed data set D1 (using the
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BIND strategy). For the data set D2, it took 55.724 seconds to
retrieve information from the unindexed data set, and 18.374
seconds from the indexed data set. A significant decrease is
observed from the values obtained when the indexed data
sets are queried. This indicates that the proposed strategy
facilitates information retrieval when implemented on the data
sets. Moreover, a consistent decrease in the values obtained
from the BIND strategy (the indexed data sets), signifies
that the BIND strategy maintains a consistent performance in
terms of information retrieval when the size of the data keeps
increasing.

In general, it is observed that although the values obtained
for the processing time increases with an increase in the size
of data sets, the proposed strategy still performs better than the
current strategy in all cases. A performance gain was obtained
when the proposed strategy was implemented on a 2-node
cluster as compared to when the current strategy was applied
on a 2-node cluster using the same sizes of data sets. Also, the
same performance was obtained when the experiments were
conducted on a 3-node cluster. Interestingly, the performance
gap between BIND and the current strategy grows as the
data set volume increases. These favorable results indicate that
BIND reduces information retrieval time.

In addition, a significant decrease in the processing time was
observed when a 3-node cluster was used as compared to the
processing time obtained from using a 2-node cluster. This
is due to the additional computational resources (processing
and memory/storage resources) used. The BIND strategy still
produced lesser values as compared to the current strategy
when the number of nodes were increased. This proves that
the performance of the BIND strategy does not decline with
increase in size of the data set, as well as nodes (as noted in
all cases). Hence, the performance of the proposed strategy
improves with increase in nodes, and therefore, could be
implemented (and would perform better) on thousands of
clusters as could be found in large organizations. In a nutshell,
the BIND strategy exceeds the currents strategy in all cases

tested.

V. CONCLUSION

The objective of the study is to propose the design of a
Big Data indexing strategy called BIND strategy, for pro-
cessing of Big Data using the MapReduce framework. The
proposed strategy facilitates processing of Big data, as well as
storage and information retrieval. The strategy was designed
and implemented using the Java programming language. The
program was executed a number of times on varying data sets
(PingER historical log data), as well as varying amount of
nodes to compare and analyze the results. The overall results
obtained, indicates that the proposed strategy produces lower
values than the current strategy. It is noted that the proposed
strategy still performs well with increase in nodes, and query is
facilitated when the proposed strategy is implemented on data
sets. The time taken to process a given amount of data using
the proposed strategy has been minimized. This is supported
by the results obtained from the study. Users and organizations
that manage Big Data will find the BIND strategy helpful in
the processing of Big data. For future study, it is recommended
that the experiment be conducted on an online mode to note
the performance of the BIND strategy in terms of information
retrieval as compared to the current strategy.
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