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Introduction
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Was a graduate student here at UCLA (graduated 2018)

* CSCs, GEMSs, and Sphalerons
Freeze-out thermal relic dark matter

* Direct detection experiments and WIMPs

* Sub-GeV range needs something else
Going to roughly following one particular model

* A’ aka dark photons aka heavy photons

* This is not the only one, but it is one of the most simple
Accelerator based fixed target experiments

* Visible final states
* |nvisible final states

End of freeze-out thermal relics in sight?



Thermal Relic Dark Matter (freeze-out)
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Dark Matter Relic Abundance
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Thermal Dark Matter WIMPs

 Dark matter annihilation cross section sets
scale, thermal targets are cross sections 0 T

=1
2107

giving the observed relic abundance ata *" |

leon cros:

given mass
* Mass too low gives too high of a relic e ™
& \@0“‘{\0
abundance (o ~ m?#/ |\/|Z4) T

* Higher masses result in relic abundance
lower than observed

* WIMPs mostly ruled out at this point and
can’'t be below ~ 2 GeV

arxiv:2209.07426


https://arxiv.org/abs/2209.07426

Dark Sectors
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Thermal Dark Matter WIMPs
Need higher
annihilation —

Cross section

* Weak interactions can’t give high enough annihilation cross
sections below ~ 2 GeV (Lee-Weinberg bound)

Introducing a Dark Sector with a new gauge boson will result in
relatively larger annihilation cross section

* Coupling to SM becomes a level deeper (need a loop)

* Relatively low mass makes production a viable option


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.39.165

A New Dark Force
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Simplest case is a new U(1)’

* New “photon” called A’ or dark
photon or heavy photon

e Can have non-zero mass

* Kinetic mixing to SM photon
* Tiny coupling to SM

* Annihilation cross section of
DM is increased in early
universe

* A dark sector like this with
standard model scale masses
IS a natural expectation
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Hunting for a Simple Dark Sector

Where there are photons, there are dark photons!
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Focus @SLAC different mass-coupling ranges
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Electron Beam Fixed Target Final States
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i
« m,~m_ ~ MeV-GeV gives us two “signatures” to search for:

2me<ma <2 mpm: ma’ > 2 mpMm:
A’ must decay to SM fermions. Presumably gp > ee,so A’

—search for “visibly decaying” dark photons strongly favors decays to DM.

Heavy Photon Search (HPS) =>search for hght dark matter
Light Dark Matter Experiment (LDMX)

[~ DM
A’ €e A’ gD

[+ DM

Focus on visible final states first and transition to invisible ones in this seminar



Searching for Visibly Decaying Dark Photons

10 %
* Current constraints -
are still missing for
longer lived dark 10-6
photons decaying to

e+e- 10—7’
* Red “band” shows
the thermal targets

* HPS is designed to 10-9
be sensitive to “long”
lived thermal targets 10710
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i i 10

A" Mass (GeV)
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Searching for Visibly Decaying Dark Photons

104

* Large region of
untested thermal

targets 107

* Decay lengths in this 109
region for a few GeV
of kinetic energy are 10~

™

~ Mm-Ccm v

* Small mixing
parameter means
huge number of
electrons on target

. TG+
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Dark Bremsstrahlung
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* Short decay lengths, small angles of
deflection from beam, and large number of

Z2€2 electrons on target make these thermal
rate o 5 target a challenging region to test
mA,
EA’ ~ E

FE = beam energy

typically a few degrees!
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The HPS Collaboration
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e HPS is a small diverse collaboration
e ECAL made possible via major
contributions from France and ltaly

SLAC (15) [N
Jlab (12)  |SRIEN
ODU (1) e
Stanford (4)

Stony Brook (1)

==

e AN

INFN Catania (2)
INFN Genova (4)
INFN Rome (1)
INFN Sassari (3)
INFN Torino (1)
INFN Padova (1)

Orsay (6)

Yerevan (3)

Glasgow (1)
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The HPS Experiment at JLab
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Continuous Electron Beam Accelerator Facility

recirculating

FhmiN

Search for visible dark photon
finals states using ~ 10%°
electrons, energies 1-6 GeV,
on a thin W foill

Dipole enables momentum
measurement of e*e-

Trigger on e*
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The HPS Detector

PbWO4 ECal

Silicon Vertex Tracker Built by [Lab/Orsay/INFN

Built at SLAC/UCSC

| =

sensor planes
W target and DAQ

SVT measures trajectories of electrons to ECal identifies e*e pairs with precision
reconstruct e“e- mass and vertex position. timing to reject single e- backgrounds.
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HPS Engineering Runs

2015 Engineering Run
50 n A @ 1.06 GeV

|.7 days (10 mC) of

Integrated current (mC)

commissioning with SVT @ 1.5 mm

physics data ) —
2016 Engineering Run
200 nA @ 2.3 GeV .

5.4 days (92.5 mC) of

Integrated current (mC)

< unplanned CEBAF down

SVT@ 0.5 mm

bhysics data _,_J=/

February 2016

March 2016

April 2016
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2000

Events (Millions)
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Analysis Results from Engineering Runs

* New bump hunt statistical 10~ o=
procedure developed with \\ @ \ N
respect to first paper on 2015
engineering data alone

* Same test statistic ATLAS
used in higgs discovery
arxiv:1207.0319

- 95% CL_ limit

* Not enough luminosity for
sensitivity to displaced region 1077

NAGS

* Paper recently submitted to \a \

PRD - §\\\\ \

* arxiv:2212.10629 iz ¢ ¢ T =
A’ Mass (GeV)
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https://arxiv.org/abs/1207.0319
https://arxiv.org/abs/2212.10629

HPS Si Vertex Tracker
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HPS 2019 Physics Run
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70 140
HPS 2019 run data statistics
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Integrated Luminosity
Pulsed Electron Beam Runs
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o

Aug-14 Aug-19 Aug-24 Aug-29 Sep-03 Sep-08

Date [2019]

* Ran HPS with 4.55 GeV electron beam in 2019

Jul-25 Jul-30 Aug-04 Aug-09

* Overcame several operational challenges along the way
* Ungrounded target sparking and crashing DAQ

* Power outage caused magnet to quench and move SVT

* Focusing on calibration of this data and moving on to the physics analysis
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Installing Front End Electronics Boards
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Testing at the Surface
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Moving the SVT
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Installation in Hall B

“MC Fiber”
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HPS Run 2021
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Beam Energy = 3.74 GeV
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Wi
run with 20 um W HPS Run 2021 Progress
production runs
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* Collected 84% of luminosity we had hoped to get
* Biggest data set collected by HPS so far!

* Mostly focused on alignment of tracker at this point
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HPS Reach Estimates
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PHENIX
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HPS Simulation
I [T TTTTTI
10"

102 10~
A’ Mass (GeV)

PHENIX

_ HPS Simulation
TTTT
I 1 I [T llbo

A’ Mass (GeV)

* New reach estimates using full detector Geant4 simulation and taking
into account lessons learned while analyzing engineering run data

* Full lumi is beam time already granted to HPS by Jlab

* The Dark Sector details can make things more complicated though...

(Y]
5,-
(

I»
)
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HPS SIMP Reach Estimates

162 3

1073 -

2-body decays, m,/ f, = 4w
HPS 2016-2021:

BaBar

] : : 3 :
E 12{01—”;2 : : 10 i 7 scatt.:

HPS
2016-2021

\—-———__‘

ma [GeV]

Dark Sector could also have an SU(3) gauge symmetry

A’ might not directly decay to SM leptons

Now, what about invisible A’ decays?

am o 2-body decay visible
Invisible to HPS,~ .- " A to HPS

&p A/ ™ i



Hunting for a Simple Dark Sector
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« m,~m_, ~MeV-GeV gives us two “signatures” to search for:

i oa é
rate o " Nucleus 7
A/
Ey ~E o X DM
- ~(3)
5 Lol ey /
E = beam energy I\Qn,\ >1/z X D M
E
— typically a few degrees!

&

|

Measure the recoil electron

ma' > 2 mpMm:
Presumably gp > €e,so A’
strongly favors decays to DM.

—search for light dark matter
Light Dark Matter Experiment (LDMX)

DM
A’ gD

A could be virtual DM

26




Sub-GeV Freeze-Out Thermal Relics

WIMP thermal DM:
M, <2 GeV results in early

freeze out, too much DM

sub-GeV thermal DM:

new comparably light mediator
can give correct relic abundance.
Example: dark photon mediator

Observed DM abundance
predicts (minimum) cross
section at accelerators

10 102 103

27



The Relativistic Advantage
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Accelerator experiments are uniquely
positioned to test thermal targets
because high g?> makes them insensitive
to DM spin and mass matrix
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LDMX Collaboration
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* Roughly 50 people
* Spokespeople: Tim Nelson (SLAC) and Torsten Akesson (Lund)
* Proposing to construct apparatus in End Station A at SLAC

* Beam taken from LCLS-II drive beam already on its way to beam dump
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Detector Concept
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Tracker / / \

Tagger Trigger Thin Recoil Electromagnetic Hadronic
tracker Scintillator  target tracker Calorimeter Calorimeter

* Need O(10%) electrons on target, individually reconstructed
* Detector technology with fast readout and high radiation tolerance

* Broadly sensitive to production of invisible particles in the MeV-GeV
range independent of specific mediator (or even having one at all)

* https://arxiv.org/abs/1807.01730
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https://arxiv.org/abs/1807.01730

LDMX Detector Model

* Detector model built and simulated via Geant4

* All hardware is based on existing technologies and is currently under
development as a “Dark Matter New Initiative”

* https://arxiv.org/abs/1808.05219

31



Signal Kinematics
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Electron Recoil Energy Distributions, £, > 50 MeV

* A’ carries most of the
momentum of electron
from beam

Inclusive Single e~
Background

* Signal is a low-
momentum electron
and large missing
momentum/energy

Event Fraction

* Recoil electron will
have a transverse kick

32



LDMX Backgrounds
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BDT to Reduce Photon Backgrounds

LDMX Slmulatlon
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https://arxiv.org/abs/1912.05535

LDMX A’ Reach
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* Sensitive to majority of thermal targets for invisible A’ final states

* Extended sensitivity needs higher beam energy, thicker target, and higher
integrated luminosity

* This is only one of many models LDMX has sensitivity to



Thank You!
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Getting close to publishing HPS engineering run results for A

Upgraded HPS Si Vertex Tracker before 2019 run

HPS physics data taken recently with reach estimates showing
sensitivity to visibly decaying A’ thermal targets

* Proposing new project to DOE: Light Dark Matter eXperiment
* Broadly sensitive to freeze-out thermal targets for MeV-GeV DM

* DOE already building Sector 30 Transfer Line (S30XL) from
LCLS2 beam to End Station A

* LDMX is not a funded project yet, but things look promising

* Thank you for your attention, questions?

36



Thank You!
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DM Landscape

@ — missing

stayed in the

(often under tension

with BBN4+CMB-+LSS

or requires non-standard cosmology ) v

DM Ds SM
or variants
+ s
(3—2,..)
DM Ds SM
—_—

Secluded, SIMP, ELDER, @

Asymmetric variants, ...

arxiv:1807.01730

momentum /visible decay

dark sector

(Y]
I
)

Was DM ever in thermal equilibrium with the SM?

yes

Where did the DM entropy go?

SM

How was the DM entropy transferred?

indirectly
directly

no

How was 1t produced?

ultra-weak
initial

contact with

a thermal bath @

conditions

freeze-in, QCD axion,
sterile-neutrino, ALP,
super WIMP, ... WIMPZILLA,

late decays,

primordial BH, ...

)::f‘('fﬂ.i! ']]llii'-"tl

*predictive

v
DM SN
or variants
(co-annihilation,
DM SM semi-annihilation, ...)
—_—

WIMP, Sub-GeV Relic, @

Asymmetric variants, ...
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https://arxiv.org/abs/1807.01730

LDMX Recoil Electron Transverse Momentum
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LDMX measures the kinematics of dark matter production, enabling
detailed study of the dark sector
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LDMX Background p_T Cut Effect on Reach
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LDMX Ecal BDT Variables
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https://arxiv.org/abs/1912.05535

Even More New HPS Models

o1 A
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HPS 2016 Mass Resolution
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HPS 2016 Bumphunt
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HPS 2016 Displaced Vertex
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More Visible Final State Models
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[Submitted on 15 Jan 2018 (v1), last revised 9 Jul 2018 (this version, v2)]

Serendipity in dark photon searches
Philip llten, Yotam Soreqg, Mike Williams, Wei Xue
* Recently dug up a paper from 2018 on recasting A’ constraints
to other U(1) current couplings

* https://arxiv.org/abs/1801.04847, published in JHEP

* Abstract: Searches for dark photons provide serendipitous discovery potential for other types of vector particles. We
develop a framework for recasting dark photon searches to obtain constraints on more general theories, which
includes a data-driven method for determining hadronic decay rates. We demonstrate our approach by deriving
constraints on a vector that couples to the B-L current, a leptophobic B boson that couples directly to baryon number
and to leptons via B-y kinetic mixing, and on a vector that mediates a protophobic force. Our approach can easily be
generalized to any massive gauge boson with vector couplings to the Standard Model fermions, and software to
perform any such recasting is provided at this https URL .

“Darkcast”

* They provide easy to use code, which includes a long list of
reach estimates

* | put our latest/greatest reach numbers into code
* They admit to not treating displaced estimates properly 3


https://arxiv.org/abs/1801.04847
https://gitlab.com/philten/darkcast

Primer Info (sorry kinda dense)
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* They define a “generalized” coupling parameter c£cgxd a/f+"fXu+ > Lxys-
f X
e Xis a generalized vector boson

* Dark photons will have g = €e in this generalization

2
Ted—eZ X Je"'ﬁ_—}}f'}- o [Q'IIEJ

* Rates can then be written in general wrt A’ as: =

OeZ—seZAl  Opre——ary  (£€)7

 See paper for more details on what g,x_looks like for the various X's

SR \/M Production Mechanism B-L B Protophobic
ark photon
OeZoeZX 95r elgh gi%
10‘] TeZ—eZA ( )2 (471—)4{5 )2 (Ee)z
. . Octe-—Xn gh elgd, gg
This is from _ Cute—sdiy (c0)? (@n)i(ce)? (cc)?
their code 102 isss b s 0
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Protophobic Force

o1 A

Popular idea for explaining X17 while still satisfying constraints from
NA48/2 on 11° - et+e-y

General model idea with “tunable” couplings to each fermion, including a
constraint on the ratios of a handful of them

* HPS has a competitive reach for this since we only care about leptons

protophobic M
More info on
102 ) this model can
- be found at
7 0 https://arxiv.org/

abs/1604.07411

10-%

108 - o — —— —
102 1071 10" 101 102 48
mass [GeV]
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CLFV to e-mu

ol AL

o b AN

* Details on these models not discussed in darkcast paper

* Reach estimates provided in code, maybe reach out to authors to learn
more about details but no way this is done correctly for us

* Potential to improve our reach here by including muons in final state

*  We quite possibly will always have some unique sensitivity to this

R

Le-Ly, boson

loﬂ =

10-2

1_0—4 4

10-%

10°8 ————— —_— — —— T —
102 1071 10" 101 102 49
mass [GeV]



CLFV to e-tau

ol AL

o b AN

* Details on these models not discussed in darkcast paper

* Pretty sure lifetime of these will be longer for our mass range

* Potential to improve our reach here by including muons in final state

* We quite possibly will always have some unigue sensitivity to this

La-L; boson

R

100 =

10-2

1074 1

10-%

10°8 ————— —_— —
1072 1071 10"
mass [GeV]

e
101

102

We will need to
really master e-mu
before we seriously
tackle this one
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B-L Currents

o1 A

TN
* This is one of my personal favorites (PhD thesis on a B-L symmetry in SM)

* This is probably the most complicated for us phenomenologically
* There are a large number of fermion configurations that work, sometimes neutrinos

* This is gonna make a bunch of hadrons, so tricky to figure out for HPS

B-L boson M

e-brem p-brem
10° ete- mm d-Xxd

Em LHC . 7o Xy
D0 xp? 0 = Xy DM and matter‘
-brem .
R = antimatter

asymmetry are
convenient to couple
together in a model

10-%

10-8

102 51

mass [GeV]
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