The Heavy Photon Search Experiment Summary and Recent Developments For 2019 Data Run

Alic Spellman
University of California Santa Cruz
APS Division of Particles & Fields 2021 Annual Meeting
July 13, 2021

Introduction

- Interest growing in thermal light (sub-GeV) dark matter candidates, which require new light gauge boson
- The Heavy Photon Search (HPS) is a fixed target experiment at Jefferson Lab focused on detecting the heavy photon (A'), a finite-lifetime mediator connecting SM→Dark-Sector
- HPS utilizes a mass resonance search and a displaced vertex search
- After 2015+2016 Engineering Runs, analysis driven upgrades have been implemented for **2019 Data Run**, showing expected improvements to the A' displaced vertex search

<u>Search for Dark Matter – Dark Photons</u>

Kinetic mixing

Assume an additional $U_D(1)$ gauge symmetry gives rise to a new gauge boson (A')

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} F_Y^{\mu\nu} F_{Y,\mu\nu} - \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} + \frac{1}{2} \epsilon F'^{\mu\nu} F_{Y,\mu\nu}$$

Kinetic mixing leads to coupling of A' to SM photon

Induces weak effective coupling of Ee to SM fermions $\epsilon \sim \frac{eg_D}{16\pi^2}log\frac{M_\psi}{\Lambda} \sim 10^{-4}-10^{-2}$

Assume
$$M_A$$
, < $2M_\chi$ & M_A , < $2M_\mu$
A' decay \rightarrow e⁺ e⁻

$$\alpha_D \equiv \frac{g_D^2}{4\pi} \quad \text{DM} \quad \frac{g_D}{\bar{\chi}} \quad \frac{\epsilon}{A'} \quad \frac{e}{\gamma} \quad \frac{e^-}{\sin \alpha} \quad \alpha \equiv \frac{e^2}{4\pi} \quad \frac{e^+}{\sin \alpha} \quad \alpha \equiv \frac{e^2}{4\pi} \quad \frac{e^+}{\sin \alpha} \quad \alpha \equiv \frac{e^2}{4\pi} \quad \frac{e^-}{\sin \alpha} \quad \alpha \equiv \frac{e^2}{4\pi} \quad \frac{e^+}{\sin \alpha} \quad \alpha \equiv \frac{e^2}{4\pi} \quad \frac{e^-}{\sin \alpha} \quad \alpha \equiv \frac{e^2}{4\pi} \quad \alpha \equiv \frac{e^2}$$

Search for Dark Matter – Dark Photons

- A' production via fixed target dark bremm, sharply peaked at E_A , = E_{beam}
- Electron beam provided by Jefferson Lab CEBAF
- A' \rightarrow e⁺e⁻ narrow opening angle m_A./E_{beam}
- Short, but finite lifetime motivates displaced vertex search O(mm)
- Small production cross-section + large prompt QED background
- Requires sensitive, forward acceptance detector 0.5 mm from beam

Lifetime

 $c\tau \propto \frac{1}{\epsilon^2 m_{A'}}$

A' Signal and Backgrounds

Only distinguishable through mass resonance or displaced vertex

Radiative Tridents used to calculate expected A' production rate in MC

HPS 2019 Detector Upgrade

- 2019 upgraded Silicon Vertex Tracker to improve acceptance and z vertex resolution
- N Tracking Layers increased from 6→7

HPS 2019 Detector Upgrade

- 2019 upgraded Silicon Vertex Tracker to improve acceptance and z vertex resolution
- N Tracking Layers increased from 6→7
- New slim-edge **L0 placed closer to Target** and beamline than possible in 2016
- MC and prelim data show z vertex resolution improved by factor ~2

Stereo Sensor 2019 Tracking Upgrade Axial Sensor 3D measurement "2D" axial measurement • Axial and stereo sensor silicon strips intersect • 2D strip hits are clustered at intersection to form 3D hit • Legacy track finding uses 3D hits to form seed tracks via global chi2 fit e beam Seed Track

Kalman Filter vs Legacy Tracking

- MC Simulation Truth Studies compare New (Kalman Filter) to Legacy (Seed Tracker + GBL) tracking
- "Track Probability" indicates quality of hits on MC reconstructed track
- TrackP = 1 tracks have perfect hit content
- KF tracking shows large expected improvement in selecting hits on tracks | (25% more Perfect Tracks)

Improved hit selection expected to reduce mis-tracking background in signal region

$$\begin{array}{ll} \textbf{Track Probability} = (N_{truth_hits} / N_{hits_on_track}) \\ N_{truth_hits} = N \text{ hits from generated particle} \end{array}$$

Kalman Filter vs Legacy Tracking

- How many "reconstructable" tracks found? (Tracking Efficiency)
- Restricted to "high-quality" Tracks (TrackP >= 0.8)
- **KF Efficiency:** >85% (>95%) for e⁻(e⁺)
- Legacy Effiency: 70-75% (~85%) for e-(e+)
- New tracking shows improved tracking efficiency beyond ~1 GeV

Tracking Efficiency

$$\epsilon(p_{truth}) = \frac{N_{matched}^{recoTrack}(p_{truth})}{N_{trackableMCP}(p_{truth})}$$

Kalman Filter vs Legacy Tracking

- How many reconstructed tracks are fakes?
 - Tracks w/TrackP < 0.8
- "Fake Rate" = Binned ratio of N "fake" tracks to N reconstructed tracks
- Old Tracking shows large fake rate below 1 GeV
- New Tracking has very low fake rate across range

These MC studies suggest that new track reconstruction algorithm is more robust to mis-tracking

Tracking "Fake Rate"

Conclusions

- HPS is designed to search for heavy photons, well motivated LDM-LDM and LDM-SM mediators
- 2016 Engineering Run analysis motivated detector and software upgrades for the **2019 Data analysis**
 - Vertex z resolution improved by factor of 2
 - Expect cleaner tails due to improved vertex z resolution
 - Tracking upgrade expected to reduce mis-tracking background
 - 2019 data calibration and processing (on-going)
- Preparing for 2021 Data Run, 3.7 GeV @ 4 weeks
- 2016 performance was close to A' sensitivity, and with the resulting upgrades the 2019 Data Run is expected to be sensitive to A' discovery!

HPS A' Expected

Thank You!

Backup

Expected Signal

- A' kinematics are identical to virtual photon production, and the cross section for heavy photons of mass m_{α} can be related to virtual photons of the same mass by [arxiv:0906.0580]
 - $\sigma_{A'} = \frac{3\pi m_{A'}\epsilon^2}{2N_{eff}\alpha} \frac{d\sigma_{\gamma^*}}{dm_{l^+l^-}}|_{m_{l^+l^-}=m_{A'}} \qquad \text{All following calculations are for mass slice } \underline{\mathbf{m}}_{\mathbf{k'}}$
- Number of events for both processes are given by:

 - $N_{\gamma^*} = \mathcal{L}\sigma_{\gamma^*}\epsilon_{\gamma^*}A_{\gamma^*} = \mathcal{L}\sigma_{\gamma^*}\phi_{\gamma^*}$ $N_{A'} = \mathcal{L}\sigma_{A'}\epsilon_{A'}A_{A'} = \mathcal{L}\sigma_{A}\phi_{A'}(\epsilon^2)$ Combined acceptance and efficiency into one term
 - Displaced decay of A' leads to an acceptance/efficiency dependence on lifetime
- Re-writing top equation in terms of number of A' events:
 - $N_{A'} = \frac{3\pi m_{A'} \epsilon^2}{2N_{eff} \alpha} \epsilon_{vtx} \frac{dN_{\gamma^*}}{dm_{A'}}$
 - $\epsilon_{vtx} = \frac{\phi_{A'}(\epsilon^2)}{\delta}$ ("efficiency vertex") is ratio of combined detector acceptance and efficiency for where

A' and virtual photon decays into charged particles

Expected Signal (Radiative Fraction)

Expected signal proportional to <u>radiative</u> trident production rate

$$N_{A'}=rac{3\pi m_{A'}\epsilon^2}{2N_{eff}\alpha}\epsilon_{vtx} \sqrt[dN_{\gamma^*}]{}$$
 Not measurable in data

- Relate Radiative Tridents to Background:
 - $\frac{dN_{\gamma^*}}{dm_{A'}} = f_{rad} \frac{dN_{bkg}}{dm_{reco}}$
 - where $f_{rad} = \frac{dN_{\gamma^*}}{dm_{A'}} / \frac{dN_{bkg}}{dm_{reco}}$ "radiative fraction") is ratio of selected MC radiative trident events to MC background (WAB + Tridents)
- The expected signal is now related to the <u>radiative</u> fraction by

$$N_{A'} = \frac{3\pi m_{A'} \epsilon^2}{2N_{eff} \alpha} \epsilon_{vtx} f_{rad} \frac{dN_{bkg}}{dm_{reco}}$$

Expected Signal (Radiative Fraction)

A' Parameter Space

2019 Physics Run

- JLab Continuous Electron Beam Accelerator Facility delivered continuous electron beam (2 ns bunches)
- Tight beamspot with small tails required to accommodate close SVT layers

3.5 Weeks @ 4.4 GeV ~150 nA on 8um & 20um W Integrated charge ~ 386 mC Lumi = 122 pb⁻¹

2019 Hodoscope Upgrade

- Ecal triggers on (e-e+) pair in opposite halves of ECal
- 2016 found Trigger dominated by WAB events (e- γ)
- 2016 data and simulation also shows large portion of electrons lost in Ecal hole at high P_{sum} (events lost)
- 2019 added Hodoscope over positron side of Ecal
- With Hodoscope, implement positron only trigger
- Reduces WAB triggers and recovers events with lost e-

2019 Detector Diagram

