Meeting of the Division of Particles & Fields of the American Physical Society Northeastern University, July 29th, 2019

The Heavy Photon Search Experiment

Cameron Bravo (SLAC) on behalf of the HPS collaboration

Dark Photons

- Strong evidence for the existence of Dark Matter (DM)
 - We know nothing of it's particle nature
 - WIMPs are a well motivated candidate but searches for them have yielded nothing, we have looked nearly everywhere we can for them. Limited by Lee-Weinberg bound Phys. Rev. Lett. 39, 165
 - Light Dark Matter (sub-GeV range) is a good candidate but requires a new force to achieve the correct thermal relic
- We consider the case where DM interacts via a vector mediator Holdom, Phys. Lett. B 166, 1986

Dark Photons in Fixed Target Experiments

- Where there are photons, there can be dark photons aka "dark bremsstrahlung"
- Heavier product (A') takes most of the beam energy

HPS results assume a mass hierarchy $m_{A'}$ < $2m_{\chi}$

Visible Decay Backgrounds

- Radiative tridents have identical kinematics to signal; constitute an irreducible background
- Bethe-Heitler (BH) tridents have softer e+e- pairs, but still dominant in signal region

$$\frac{d\sigma\left(e^-Z\to e^-Z(A'\to l^+l^-)\right)}{d\sigma\left(e^-Z\to e^-Z(\gamma^*\to l^+l^-)\right)} = \frac{3\pi\epsilon^2}{2N_{eff}\alpha}\frac{m_{A'}}{\delta m}$$

$$p(e^{-})$$
 (GeV)
Require $0.8E_{beam} < p(e^{+}e^{-}) < 1.2E_{beam}$ greatly reduces fraction of BH background

Parameter Space: Mediator Decays to SM

HPS Signatures and Reach

SLAC

Resonance Search (Bump Hunt) High Coupling

Displaced Vertex + Bump Hunt Low Coupling

The HPS Apparatus @ JLab CEBAF

Compact e^+e^- spectrometer, immediately downstream of thin target in multi-GeV beam in Hall B.

Low-mass, high-rate (up to 4 MHz/mm²) silicon tracker (SVT) allows
vertexing long-lived A'.
SVT must suppress SM tridents
from target by factor ~107

 PbWO₄ ECal trigger eliminates 10's MHz scattered single e⁻

Engineering Runs

SLAC

2015 Engineering Run 50 nA @ 1.06 GeV 1.7 days (10 mC) of physics data

2016 Engineering Run 200 nA @ 2.3 GeV 5.4 days (92.5 mC) of physics data

- The HPS apparatus, including the SVT, has performed exceptionally well.
- HPS still approved for 165 more days of beam time: a long way to go!

Resonance Search Results with 2015 Data

- Mass resolution measured in data using Møllers
- Tridents used to calibrate the expected signal rate
- 7th order Chebyshev polynomial used for background shape
- Likelihood ratio used to quantify significance of any excess
 - No signal observed
 - Invert likelihood ratio to determine 2σ upper limit for each mass
- Only used ~1% of approved run time
- Link to paper: Phys. Rev. D 98, 091101(R)

Displaced Vertex Search Preliminary Results

 Optimum Interval Method is ideally used for small signal where signal shapes are known, but background is not sufficiently known (HPS, direct DM detection, etc.)
arXiv:physics/0203002v2

More detail in talk by Matthew Solt at APS April Meeting 2019 Not enough luminosity to be sensitive, longer run happening now!

SVT Upgrade Motivations

- Adding a new "Layer 0" closer to the target allows access to shorter decay lengths → Large multiplier on acceptance for exponential decays
- Moving Layers 2 and 3 as close to the beam as occupancy allows → Gain acceptance at longer decay lengths

10cm

SVT Upgrade Concept

- Layer 0 is similar in concept to other layers
 - Closer to target, 5 cm vs. 10 cm for L1
 - ~Half the material (0.4 % X₀)
 - Same acceptance requires being proportionally closer to the beam
- Moving L2 and L3 closer by about 700 microns is as simple as adding shims under the modules

Layer 0 Sensor Design

- 200 micron thick p⁺-in-n bulk Si
- 55 micron readout pitch
- Split into two 15 mm by 14 mm active areas, with short strips read out from both ends
- 510 channels (2x255)
- 250 micron slim inactive edge allows placement closer to beam (scribe-cleave-passivate process)
- Around 500 V maximum bias voltage

SVT Upgrade Production

- Production of Layer 0 modules was successful!
- Produced enough to replace L1 with new modules as well
- Inactive Si in L1 creates some difficult backgrounds
 - Conversion of wide-angle brems
 - Tridents from scattered e⁻¹

Hodoscope Upgrade

- Original HPS trigger uses a pair of clusters in ECal
 - Hole in Ecal for beam passage
- Trigger on only positrons can increase acceptance
 - Fake rate from photons must be controlled

Built, installed, and commissioned in time for running in summer 2019!

Challenging the CEBAF

- Require beam spot to be less than 50 microns RMS perpendicular to beam plane
 - Use wires attached to SVT uchannel to measure beam profile near target
 - CEBAF capable of delivering adequate beam
- Squeezing beam spot on our target can take many hours of tuning work

Projected 2019 Reach

We are currently running at 4.5 GeV

- 4.4 GeV is for 300 nA and 8 µm W target
- 2.2 GeV is for 200 nA and 4 µm W target

Conclusions

- Detector performed great for 2015 and 2016 engineering runs
- HPS recently published first result on bump hunt analysis of 2015 engineering run
- Preliminary vertex analysis shows sensitivity should be possible with enough data
- Successful upgrade program for summer 2019 physics run
- Challenging experiment for CEBAF to deliver beam
- We are excited to get our first full physics run
 - Still in the middle of the run.
 - Possibility of extending run is being discussed
- Thanks for you attention!