The Heavy Photon Search Experiment at Jefferson Laboratory

Sho Uemura

SLAC
on behalf of the HPS Collaboration
What is the heavy photon?

- A new massive $U(1)$ boson with no (direct) coupling to SM
 - Kinetic mixing with the photon \rightarrow weak coupling to electric charge [Holdom 1986]
- If it couples to dark matter, could serve as “portal” to the dark sector
- Two relevant parameters: mass $m_{A'}$, relative coupling strength α' / α
Why do we care?

- PAMELA, Fermi, AMS find cosmic ray e^+ excess
 - DM annihilation? Can’t be direct (no \bar{p} excess), but consistent with sub-GeV $m_{A'}$

- Muon g-2 deviates from SM predictions
 - Can be explained by A'

- Many current searches! See Tuesday talk by John Jaros
Producing heavy photons

- Similar to bremsstrahlung: e^- (1.1, 2.2 and 6.6 GeV) on high-Z fixed target

- A' carries most of incident e^- energy (unlike γ bremsstrahlung)
- Pairs from A' decay are produced along beam with some decay length and small opening angle

$E_A \sim E - m_A$
$E_e \sim m_A$
Search channels

- **Bump hunt**: look for a peak in pair invariant mass
 - A' decays compete with QED tridents; mass resolution ($\sim \text{MeV}$) is key
- **Vertexing**: look for pairs originating downstream of the target
 - Requires a tracker close to the target for $\sim \text{mm}$ vertex resolution
- **HPS** probes a large unexplored region of the parameter space
The HPS detector

- Thin (0.125% or 0.25% X_0) tungsten target
- Silicon microstrip tracker in vertical B-field for measurement
- PbWO$_4$ calorimeter and scintillator hodoscopes for trigger
Killing backgrounds . . . in space

- Main detector background is electrons scattered in the target and bent by the tracking field: “sheet of flame”
- Vacuum transport for primary+scattered beam through entire detector
- All detectors split ±15 mrad above and below beam plane
 - Active region of tracker layer 1 is 1.5 mm from beam
Killing backgrounds . . . in time

- CEBAF at JLab: continuous beam (499 MHz rep rate and 100% duty cycle)
- Use time resolution to reject out-of-time hits
 - Tracker readout: APV25 (CMS) with 24 ns sampling period (2 ns resolution after time reconstruction)
 - ECal and muon system readout: FADC250 (JLab) with 4 ns sampling period

Fit CR-RC pulse shape to determine t_0
2012 test run and beyond

- Built and ran a test version of the tracker and the full ECal in a parasitic run with a photon beam
- Demonstrated key challenges:
 - verified MC treatment of multiple Coulomb scattering
 - multi-kHz trigger and readout
 - tracker hit time reconstruction
- On track for full run when CEBAF resumes operation after 12 GeV upgrade — late 2014