

Searching for Visibly Decaying Displaced Dark Photons with the Heavy Photon Search Experiment

Sarah Gaiser (Stanford/SLAC), on behalf of the HPS collaboration

Stantore

APS April Meeting 2024

DEPARTMENT OF

Low Mass Freeze-Out Thermal Relics

- DM annihilation cross section from weak interaction: $\langle \sigma v \rangle \sim \frac{m_\chi^2}{M_z^4}$
 - For $m_{\chi} \lesssim 2 \text{ GeV}$: $\langle \sigma v \rangle$ too small for thermal DM (Lee-Weinberg bound)

Low Mass Freeze-Out Thermal Relics

- DM annihilation cross section from weak interaction: $\langle \sigma v \rangle \sim \frac{m_\chi^2}{M_\pi^4}$
 - For $m_{\chi} \lesssim 2 \text{ GeV: } \langle \sigma v \rangle$ too small for thermal DM (Lee-Weinberg bound)
- Dark Sector with lighter mediator increases cross section

Low Mass Freeze-Out Thermal Relics

- DM annihilation cross section from weak interaction: $\langle \sigma v \rangle \sim \frac{m_{\chi}^2}{M_{\pi}^4}$
 - For $m_{\chi} \lesssim 2 \text{ GeV}$: $\langle \sigma v \rangle$ too small for thermal DM (Lee-Weinberg bound)
- Dark Sector with lighter mediator increases cross section
- Minimal Dark Sector: new U(1)'
 - Natural extension to SM
 - Heavy/Dark Photon A'
 - Kinetic mixing with SM
 - $\rightarrow\,$ small coupling: Dark Sector SM
 - Can reproduce correct DM abundance

HPS Search Strategy

HPS Search Strategy

- e⁻ beam on W target; production of A' through Dark Bremsstrahlung
- Search for visibly decaying Dark Photons: $2m_e < m_{A'} < 2m_\chi$
 - Depending on coupling strength: prompt or displaced decay
 - $\rightarrow~$ This talk: focus on probing thermal target region

HPS experiment at JLab

- HPS experiment in Hall B at JLab using electron beam from CEBAF
- ECal for trigger
- SVT: silicon strip tracker
 - \sim 25000 channels
 - Close to beam: 500 μm, 15 mrad acceptance
- Four datasets:
 - Two engineering runs: 2015 (1.05 GeV), 2016 (2.3 GeV)
 - Two physics runs: 2019 (4.55 GeV), 2021 (3.74 GeV)

Results published on 2016 data, other years coming up soon

Displaced vertex analysis

Plots from HPS Collaboration, PRD108, 012015 (2023)

- Long-lived A's: decaying 1-10 cm from target
- True displaced vertex:
 - Good vertex χ^2
 - Projects back to beam spot

SI AC

 Tracks with large vertical impact parameter

Signal region:
$$0.5 = \int_{z_{
m cut}}^{\infty} F_{
m bkg}(z) \; {
m d}z$$

Displaced vertex analysis

Plots from HPS Collaboration, PRD108, 012015 (2023)

- Long-lived A's: decaying 1-10 cm from target
- True displaced vertex:
 - Good vertex χ^2
 - Projects back to beam spot
 - Tracks with large vertical impact parameter
- Signal region: $0.5 = \int_{z_{cut}}^{\infty} F_{bkg}(z) dz$
- Repeated for overlapping mass slices
- Categorize events based on layer containing first hit

Results of the 2016 Engineering Run

Expected signal yield

Plots from HPS Collaboration, PRD108, 012015 (2023)

- Calculating signal yield:
 - Decay length distribution

SLAC

Detector acceptance and efficiency

• Peak at
$$m_{A'} = 75$$
 MeV,
 $\epsilon^2 = 2.1 \times 10^{-9}$

 \rightarrow 0.52 events

Results of the 2016 Engineering Run

Plots from HPS Collaboration, PRD108, 012015 (2023)

- Calculating signal yield:
 - Decay length distribution
 - Detector acceptance and efficiency

• Peak at
$$m_{A'} = 75 \text{ MeV},$$

 $\epsilon^2 = 2.1 \times 10^{-9}$

- \rightarrow 0.52 events
- Strongest exclusion at $m_{A'} = 82 \text{ MeV}, \ \epsilon^2 = 1.7 \times 10^{-9} \
 ightarrow 7.9 \times \sigma_{A'exp}$
- No sensitivity to minimal A' model yet (L = 10.6 pb⁻¹) → Sensitive to unique phase space given higher luminosity

Current Status and Plans

- Looking into other DM models that HPS is sensitive to
- Analysis of 2019 and 2021 datasets is currently in progress, results expected soon
 - 2019: $L = 110 \text{ pb}^{-1}$, \sim
 - 2021: $L = 160 \text{ pb}^{-1}$
 - Improved SVT setup
- Further running planned in 2025/26 at JLab

Current Status and Plans

- Looking into other DM models that HPS is sensitive to
- Analysis of 2019 and 2021 datasets is currently in progress, results expected soon
 - 2019: $L = 110 \text{ pb}^{-1}$, \sim
 - 2021: $L = 160 \text{ pb}^{-1}$
 - Improved SVT setup
- Further running planned in 2025/26 at JLab

Thank you!

-SI AC

Silicon Vertex Tracker

- 15 mrad acceptance above/below beam spot
 - Active edge of first sensor 1.5 mm from beam center
 - First three layers moveable: retract for beam tuning
- Enclosed in 0.24 T downward-pointing dipole field
- Readout using APV25 chips: 'multipeak mode' recording six samples of signal development
 - $\rightarrow~$ Hit time reconstruction $\sim 2\,\text{ns}$

Distribution of vertex position

- Signal region for < 0.5 bkg events
- Analysis depends on event category: L1L1, L1L2, L2L2

Distribution of vertex position

- Signal region for < 0.5 bkg events
- Analysis depends on event category: L1L1, L1L2, L2L2

2016 Engineering Run – Mass resolution

- 2016 mass resolution:
 - Elastically scattered electrons have $E \sim E_{\rm beam}$
 - Smear MC momenta to match data resolution
 - Compare Møller pairs in data and smeared MC

Systematic description	L1L1 value	L1L2 value
e^+e^- composition	~7%	
Mass resolution	~3%	
Analysis cuts	~8%	~13%
A' efficiency	~5%	
Total in quadrature	12%	16%
Target position	$\sim 5\% - 10\%$ (m/e dep)	

TABLE I. A summary of systematic uncertainties that impact the final result of the displaced vertex search. Where there is a single number, the systematic effect is the same for L1L1 and L1L2.

Table from HPS Collaboration, PRD108, 012015 (2023)

- Systematic uncertainties from careful investigation of data and MC
- Optimum interval method (OIM) with 90 % confidence interval C_0
 - OIM is an extension of maximum gap method allowing for small (unknown) background
 - Find optimum interval to set limit on smallest cross section at given C_0

Resonance Search

Plot from HPS Collaboration, PRD108, 012015 (2023)

- Resonance search over mass range 39-179 MeV in 1 MeV steps
- Using 95 % CL_s limit
- Trying to get better sensitivity by improving background model for future analyses

SI AC

Resonance Search

Exclusion plot combining 2015 (HPS Collaboration, PRD98, 091101 (2018)) and 2016 (HPS Collaboration, PRD108, 012015 (2023)) results

- Resonance search over mass range 39-179 MeV in 1 MeV steps
- Using 95 % CL_s limit
- Trying to get better sensitivity by improving background model for future analyses

SI AC