Status update for the Heavy Photon Search experiment

Rafayel Paremuzyan, on behalf of HPS collaboration

University of New Hampshire

Introduction

What, if Nature contains an additional broken U(1) (Abelian) force mediated by a massive vector boson, A'?

\[
\mathcal{L} = \mathcal{L}_{SM} + \frac{\epsilon}{2} F_{\mu\nu}^Y F'^{\mu\nu} + \frac{1}{4} F'^{\mu\nu} F'^{\mu\nu} + m_{A'}^2 A'^{\mu} A'^{\mu}
\]

Kinetic Mixing

$\gamma \leftrightarrow A'$

ϵ is the mixing strength

generated by heavy particles $	imes$ interacting with γ and A'

Many Dark Matter searches are based on this hypothesis
Producng A' in fixed target experiments

Since A' "can" couple to electric charge, then it is possible to expect it to be produced in a Bremsstrahlung process.

A' production

Production of Timelike photon (radiative Tridents)

\[
\sigma \propto \frac{e^2 Z^2}{m_{A'}^2}
\]

Much larger cross section, But very different kinematic

Indistinguishable kinematics

Angle: Forward

Energy: takes almost all the beam energy

\[
\theta_{A'} \max \sim \max \left(\frac{\sqrt{m_{A'} m_e}}{E_0}, \frac{m_{A'}^{3/2}}{E_0^{3/2}} \right)
\]

\[
\frac{E_{A'}}{E_{beam}} \sim 1 - \max \left(\frac{m_e}{m_{A'}}, \frac{m_{A'}}{E_0} \right)
\]

\[
\frac{\sigma(eA \rightarrow e'A' (\rightarrow e^- e^+))}{\sigma(eA \rightarrow e'\gamma^* (\rightarrow e^- e^+))} = \left(\frac{3\pi e^2}{2N_f \alpha} \right) \frac{m_{A'}}{\delta m}
\]

From O. Moreno's Thesis
HPS setup in the Hall B

HPS is located in the downstream alcove
HPS experimental setup

Chicane system with 3 dipole magnets
4 μm tungsten target

Electromagnetic Calorimeter
442 PbW04 Crystals
Initiates the trigger (Main, and 3 diagnostic)
Measures particle’s energy
Resolution $\frac{4\%}{\sqrt{E}}$ at 1 GeV

Silicon Vertex Tracker
6 layers of silicon
1st layer of silicon is at 0.5 mm from the beam
Measures charged particle’s momentum
Vertical hit resolution $\approx 6 \mu m$
Horizontal hit resolution $\approx 60 \mu m$ (1st 3) and $\approx 120 \mu m$ (3 other layers)
HPS proposed reach

180 approved days

Opportunistic runs:
Run only after work hours (2015)
And only on weekends (2016)

2015 Spring:
Beam current: 50 nA
Beam energy: 1.05 GeV
24% of proposed amount of production data

2016 Spring:
Beam current: 200 nA
Beam energy: 2.3 GeV
77% of proposed amount of production data

Prompt decay, but large coupling

Find a peak over a large background
Small coupling, but longer decay time

No background, few events are enough
Tridents: Data vs MC

Expectations from MC

Note: The ratio $f_{rad} = \frac{N_{Rad}}{N_{Full}}$ is important for the calculation of ϵ

$$\frac{\sigma(eA \rightarrow e'A'(\rightarrow e^-e^+)\gamma^*)}{\sigma(eA \rightarrow e\gamma^*(\rightarrow e^-e^+))} = \left(\frac{3\pi\epsilon^2}{2N_f\alpha}\right) \frac{m_{A'}}{\delta m}$$

To get the f_{Rad}, it is important to understand the P_{sum} distribution.

However, the agreement between data and MC is not good

Trigger has been checked quite thoroughly

Trigger eff. > 95%

Calorimeter detection efficiency ≈ 100

Lifetime >85%

No efficiency related factor found that could explain such discrepancy
Wide Angle Bremsstrahlung (WAB)

Two step process:
WAB then photon conversion

Photon conversions from the target, 1st and 2nd SVT layers can mimic trident signal

Both: WAB and photon conversion have large cross sections, so we have revised WAB contribution in the MC and data

The EGS5 program, that we are using for transport of the beam in the target, treats WABs incorrectly, resulting the the scattered electron escaping detection
Evidence of WABs in data

$e^- e^+$ pairs from WAB photon conversion have
\sim 0$ opening angle

- consequently ~ 0 invariant mass,
- and should be on the same detector half

Three different peaks correspond to the photon conversion
In the target, 1^{st} and 2^{nd} SVT layer

Data

1$^{\text{st}}$ peak: Conversion from target
2$^{\text{nd}}$ peak: Conversion from 1^{st} layer
3$^{\text{rd}}$ peak: Conversion from 2^{nd} layer
WABs and tridents

We generated WABs separately in MadGraph4

Both Tridents and WABs are generated by MadGraph4

Substantial contribution from WABs

The sum of tridents and WABs now overshoots data by significant amount

Fit data w/ \(a \cdot \text{WAB} + b \cdot \text{Trident} \)

Fit the sum of WAB and trident MC to the data

\[F = a \cdot \text{WAB} + b \cdot \text{Trident} \]

Fit is good, but coefficients “a” and “b” needs to be understood
Final selection sample

🌟 Blinded data: only 10% of data is allowed to be looked at

🌟 As soon analysis cuts are finalized, codes will be freezed, and the whole data will be unblinded,

Bump hunt: search for a peak over $M(e^-e^+)$ background

1.05 GeV beam

2.3 GeV beam
2015 Analysis

We need this for bump hunt and vertexing

![Graph showing invariant mass distribution](image)

Parameter	**Proposal value**	**Measured value**
Beam current | 50 nA | 50 nA
SVT occupancy | <1% | 1.00%
Pair mass res. @ 34 MeV/c² | 1.5 MeV | 1.5 MeV
Pair vertex res. @ 40 MeV/c² | 4.4 mm | 4.6 mm
Blind analysis Bump Hunt

Blind analysis: 10% of the data, $74 \, nb^{-1}$

Analysis framework is developed for the extraction/exclusion of the signal

ε is calculated assuming current MC prediction for f_{Rad}

Most significant Poll

$m_{A'} = 27.525 \, MeV$

Background: 7-th order polynomial

Signal width is fixed according to the mass resolution
Blind analysis Displaced vertex search

No significant excess is observed in the data, so HPS should try to set the upper limit

Unlike bump hunt, in displaced vertex search, some minimum Luminosity is needed in order to be able to exclude some of the phase space, i.e. for 90% confidence level, there should be 2.33 detectable A’ events

Highest contour corresponds to 0.03 events

Factors that can help:

• Better bgr rejection \(\approx \times 1.33\)
• Unblinding: \(\approx \times 6\)
• Not requiring 1\(^{st}\) layer hit: \(\approx \times 2.2\)
• Using 1.5 \(mm\) data: \(\approx \times 1.5\)
• complete 1 Full week: \(\approx \times 4.14\)
• optimize trigger to go higher currents?

Work is in progress to understand above factors
Towards publication

Completed tasks

★ Detector calibrations are done

★ Analysis frameworks are set up to extract, or to provide upper limit for the signal

★ Full data is cooked, waiting for the green light to be unblinded

Delaying factors

★ A two step process $eA \rightarrow eA \gamma \rightarrow e^-e^+$ seems has a substantial contribution to our (e^+e^-) pair sample. This process was not in the initial MC studies of our reach. Work is in progress to account for it properly.

★ We have some disagreement between different MC generators and data. Actively working on the testing it.

Instrumentation papers

★ ECal paper is sent to NIM

★ SVT and Beamline are in a quite advanced stage

★ Work on Overall HPS detector is started
Summary

- HPS experiment allows heavy photon search through bump hunt and displaced vertex search
- HPS has completed successfully data taking in 2015 and 2016
- Data analysis demonstrated good ECAL and SVT performance during these runs, and one paper sent to NIM, another three are expected soon
- We have already 2 PhD dissertations and several more are in an advanced stage
- 165 days still remain: Next physics runs in 2018 and later?
Backup
2015 run

1.05 GeV
Goal: 30 mC

Achieved: 10 mC with SVT at 1.5 mm, 10 mC with SVT at 0.5 mm
2016 run

Goal: 120 mC

2.3 GeV Only weekends

Achieved: 92.5 mC 6.3×10^9 triggers (77% of proposed running)
HPS efficiency

Online lifetime

<table>
<thead>
<tr>
<th>SINGLE 0</th>
<th>SINGLE 1</th>
<th>PARM 0</th>
<th>PARM 1</th>
<th>CALIB_1</th>
<th>PULSER</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN благод</td>
<td>3362441</td>
<td>2002237</td>
<td>748325</td>
<td>17948</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>ГЕТ</td>
<td>577284</td>
<td>2157139</td>
<td>673559</td>
<td>39315</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>ПРЕЗЕДА</td>
<td>312</td>
<td>1838</td>
<td>661</td>
<td>15615</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

life time = 84.7%

Offline lifetime, from data

Trigger efficiency

<table>
<thead>
<tr>
<th>e^+e^- Momentum Sum (GeV)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.87</td>
</tr>
<tr>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>0.8</td>
<td>0.94</td>
</tr>
<tr>
<td>1.0</td>
<td>0.95</td>
</tr>
<tr>
<td>1.2</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Beam motion studies

Small vertical beam motions ($\sim 0.5 \, mm$) can damage silicon

Signals from four halo counters summed up and as an input sent to Fast ShutDown card

Integration time: 1 ms

Placing harp wire close to the beam, with fast Struck scaler, we have measured fast beam motions

We have estimated the fast motion amplitude: less than 20 μm
Cosmic gains for initial callibration

18 MeV per crystal

Time difference between two clusters

Time offsets were calibrated wrt “precise” RF time

$\sigma = 330 \text{ ps}$

Beam bunch structure

2016 Ecal performance

FEE peak in fiducial region

2015 data

2016 data

$\frac{\sigma E}{E} (%) = \frac{1.62}{E} \times \frac{2.87}{\sqrt{E}} \times 2.5$
2016 SVT performance

Hit Efficiency for Layers 1-6

Cluster Energy Over Track Momentum

Momentum resolution is $\sim 7\%$ at 1 GeV
Beam properties

Before moving SVT to 0.5 mm beam properties were extensively studied

Good Beam position stability

Narrow vertical beam size at the target: \(\approx 50 \mu m \)

Horizontal profile

Vertical beam position distribution

Width: 45 \(\mu m \)

Vertical profile