# The Heavy Photon Search experiment at Jefferson Laboratory



A. Celentano
(INFN – Genova)
on behalf of the HPS collaboration

### Outline

### • Dark photons: introduction

- Theoretical motivations
- Experimental hints for dark photons existence
- Results from previous experiments

### Dark photons searches with fixed-target experiments

- Experimental overview
- Signal and background signatures

### • The HPS experiment at Jefferson Laboratory

- Experimental reach
- The HPS detector in Hall-B at Jefferson Laboratory
- Results from the 2012 test run

## Dark photons

• Consider an additional U(1) hidden symmetry in nature: this leads to a kinetic mixing between the photon and the new gauge boson A'



Ψ is a huge mass scale particle (M~1EeV) coupling to both SM and HS



• General hypothesis to incorporate new physics in the SM: the A' acts as a "portal" between the SM and the new sector

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \frac{\varepsilon}{2} F'_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + m_A^2 A'^{\mu} A'_{\mu}$$

• Under A' interaction, ordinary charged matter acquires a new charge εε:



**New interaction term:** 

$$\varepsilon A'_{\mu}J^{\mu}_{EM}$$

## Hints for A' existence: precision physics

### Muon anomalous magnetic moment (g-2)

- > 3  $\sigma$  deviation experiment SM prediction
- 10-100 MeV A' could explain the anomaly



### A' current searches and constrains

### Any $\gamma$ -rich environment is suitable for A' searches.

- Fixed target with e<sup>-</sup> beam
  - JLab, Mainz
- Fixed target with p beam
  - Fermilab
- Annihilation
  - BABAR, BELLE, KLOE
- Meson decay
  - KLOE, BES-3, WASA-COSY

So far, no positive A' evidences: limits in the parameters space



## A' searches with fixed target experiments

### First generation fixed-target experiments: beam dump

$$\sigma \simeq \frac{\alpha^3 Z^2 \varepsilon^2}{M^2} \simeq O(pb)$$

- e<sup>-</sup> beam incident on thick target
- A' is produce in a Bremsstrahlung-like process
- A' emitted forward at small angle:
  - Carries most of the beam energy
  - Decays before the detector
- A' decay products are measured in the detector

$$\gamma c \tau \approx 1 \text{ mm } (\gamma/10) \left(10^{-8} \alpha/\alpha'\right) \\ \times \left(100 \text{ MeV}/m_{A'}\right)$$
 shield decay volume (50 cm - 100 m) (50 cm - 100 m)





## Fixed target experiments: kinematics and backgrounds

### A' signal kinematic features:

- Very forward A' emission angle,  $E_{A'} \sim E$
- Decay products opening angle  $\sim m_{_{A'}}/E$
- Possible detached decay vertex

### **Main background sources:**

- Radiative l<sup>+</sup> l<sup>-</sup> emission (irreducible)
- Bethe-Heitler processes (different kinematics)





### Trident backgrounds



### **Signal searches:**

- "Bump hunting" in narrow invariant mass windows
- Detached vertexing

## The HPS experiment at JLab

### The HPS experiment at JLab:

- Search for A' in a fixed tungsten-target setup with an e<sup>-</sup> beam.
- Two complementary approaches:
  - Resonance search (traditional "bump hunting")
  - Detached vertex search
- Use a high-rate, high-acceptance, high-resolution detector.

## JLAB officially approved experiment. PAC41: high impact experiment!

## Data taking starts in Spring 2015. Experimental reach:

- 1 week @ 1.1 GeV
- 1 week @ 2.2 GeV
- 2 weeks @ 4.4 GeV

Within few years HPS will explore a unique region in the A' parameter space.



## HPS in Hall B at Jefferson Laboratory

HPS will run in the Hall B of Jefferson Laboratory (Newport News, Virginia) JLab recently completed the energy upgrade: from 6 to 12 GeV e<sup>-</sup> beam

- Variable electron beam energy and intensity
  - $E_{heam} = n \times 2.2 \text{ GeV}, n < 5$
  - $I_{beam} \le 800 \text{ nA}$  @ Hall B
  - $I_{beam}^{} \le 100~\mu A$  @ Hall A, C
- Quasi-continuous beam, 2ns bunches
- Excellent beam quality and stability

### Beam y-profile in Hall B (6 GeV era)





Accelerator currently being commissioned

First beam in Hall-B expected in Nov. 2014

## HPS detector

HPS will reside in the Hall B alcove, directly behind the general purpose CLAS12 detector, and before the Hall B dump.

#### **HPS** detector:

- Thin W target ( $\sim 10^{-3} X_0$ )
- Dipole magnet
- Si-tracker (6 layers w. axial/stereo modules)
  - Momentum analysis
  - Vertexing
- PbWO<sub>4</sub> calorimeter
  - Triggering

#### Hall B Alcove





## HPS detector

HPS will reside in the Hall B alcove, directly behind the general purpose CLAS12 detector, and before the Hall B dump.

#### **HPS** detector:

June 2014: first magnet installed in alcove!



- Si-tracker (6 layers w. axial/stereo modules)
  - Momentum analysis
  - Vertexing
- PbWO<sub>4</sub> calorimeter
  - Triggering



### HPS 2012 test run

## First HPS phase: the May 2012 test run.

### Test run goals:

- Develop technical solutions
- Demonstrate operational principles
- Test detector performances
- Measure backgrounds

Run in Hall B with photon beam: parasitically + 8 hours dedicated time.



## Si tracker

### SVT Design:

- 6 layers of Si modules (top-bottom) each with two sensors: axial and stereo
- 4x10 cm<sup>2</sup> Hamamatsu microstrip detector with 60 µm sense pitch.

#### Fast Readout:

- CMS APV25, 40 MHz continuous sampling, 3 μsec latency.
- Power and control in/data out through vacuum feedthroughs.
- Electronics and sensors cooled  $< 0^{\circ}$ C to remove heat and boost radiation hardness.
- **Precision Movers:** position layers 1-3 close to the beam, do wire scans, and insert targets as needed.



## HPS 2012 test run: Si tracker performances

### **HPS-2012 Si Vertex Tracker:**

- Same configuration as in the final run, 5 layers only
- Very good agreement data/MC
- Single hit resolution:  $6 \mu m$ , 2 ns









## HPS Ecal

**Ecal design:** PbWO<sub>4</sub> crystals with LA-APD readout

- Top and bottom modules
  - 5 layers each
  - 442 crystals in all
- APD readout through custom preamplifiers
  - Data recorded with 250 MHz 12 bit FADCs
- Thermal enclosure to hold crystal temperature to 18 °C to stabilize gains









## HPS 2012 test run: Ecal perfomances

### **HPS-2012 Ecal:**

- 5x5 mm<sup>2</sup> APD-readout
- Good agreement between data and MC for both energy reconstruction / trigger performances.
- Ecal upgrade in the production run driven by testrun measured performances.
  - New 10x10 mm<sup>2</sup> LA-APDs (gain matched) for better uniformity and higher S/N ratio.
  - New read-out chain matched to the new sensors

### Mean pulse amplitude per channel







## Conclusions

• HPS is a new experiment at JLab, dedicated to searching for heavy photons in the mass range 10-200 MeV and with couplings  $10^{-3} < \epsilon < 10^{-5}$ .

HPS will cover a new, unexplored region in the parameters space.

- HPS will employ two complementary searches:
  - Resonance search in e<sup>+</sup> e<sup>-</sup> invariant mass (traditional "bump hunting").
  - Detached vertex search.
- **HPS detector:** large acceptance forward spectrometer
  - Calorimeter for PID and triggering.
  - Si tracker for momentum analysis and vertexing.
- Successful 2012 test run demonstrated operational principles and validated the detector design.
- HPS is completing construction this summer, and will be installed in Hall B this fall.
   First data taking is scheduled for Spring 2015.

## Backup

## Hints for A' existence: astrophysics

### Cosmic positron fraction excess (AMS, FERMI, PAMELA)

- This anomaly could be explained by dark matter decaying or annihilating in A', which then decays to e<sup>+</sup> e<sup>-</sup>
- No excess measured in anti-proton fraction: light A' ( $M_{A'}$  < ~ 2 GeV)



### APEX

### Direct production of A' at JLab (Hall-A)

- Fixed target experiment with W target.
- A' search in invariant e<sup>+</sup> e<sup>-</sup> mass.
- Measure e<sup>+</sup> e<sup>-</sup> pairs with Hall-A High-resolution spectrometer.
- Dipole septum magnets allow for detection of produced pairs at small angles ( $\sim$ 5 $^{\circ}$ )
- Successful2012 test-run: ~ 770 k events
- Plans for 2015 run (200x statistics)







### APEX

### Direct production of A' at JLab (Hall-A)

- Fixed target experiment with W target.
- A' search in invariant e<sup>+</sup> e<sup>-</sup> mass.
- Measure e<sup>+</sup> e<sup>-</sup> pairs with Hall-A High-resolution spectrometer.
- Dipole septum magnets allow for detection of produced pairs at small angles (~5°)
- Successful2012 test-run: ~ 770 k events
- Plans for 2015 run (200x statistics)







 $e^+e^-(A')$  Mass (GeV)

## **DarkLight**

### Direct production of A' at JLab Free Electron Laser

- 100 MeV, 10 mA beam
- Internal H<sub>2</sub> target in 0.5 T solenoid
- Successful 2012 technical test run demonstrated FEL has the required performances and stability



### **Experiment status:**

- Full scientific approval from Jefferson Lab received in June 2013
- January 2014: NFS MRI proposal submitted for Phase 1 (2015)
- Work in progress to finalize full design by summer 2014



## A1 (Mainz)

### Search for A' in fixed-target experiment

• APEX-style experiment, double-arm A1 spectrometer

• 2012-2013 run: 0.05 mm  $^{151}$ Ta target,  $E_0$ =855 MeV, 22 kinematic settings

• Idea for detached-vertex search trough variable beam-stoppers abandoned

(too much background)

• Future search: low A' mass





## A1 (Mainz)

### Search for A' in fixed-target experiment

• APEX-style experiment, double-arm A1 spectrometer

• 2012-2013 run: 0.05 mm  $^{151}$ Ta target,  $E_0$ =855 MeV, 22 kinematic settings

• Idea for detached-vertex search trough variable beam-stoppers abandoned

(too much background)



[arXiv:1404.5502]

### BaBar

### Search for A' in $e^+e^-$ annihilation: $e^+e^- \rightarrow \gamma\,A' \rightarrow \gamma\,e^+\,e^-/\gamma\,\mu^+\,\mu^-$

- Select events with 1  $\gamma$  and two opposite charged leptons.
- Scan the di-lepton mass and fit a background plus signal function at each step.
  - Background includes resonances  $\rho^0$ ,  $\phi$ ,  $J/\psi$





25

[arXiv:1406.2980]

## KLOE

### Search for A' in $\phi$ decay: $\phi \rightarrow A' \eta \rightarrow e^+ e^- \eta$

- Search for excess in electron-positron invariant mass distribution of irreducible  $\Phi \to \eta \ e^+ e^-$  background
- $\sigma_{\rm M}$ < 2 MeV

### Search for A' in e+ e- annihiliation (Babar-like)

• Search for peak in  $\mu^+ \mu^-$  invariant mass distribution





**Note:** limit depends on the meson form factor,  $b = dF/dq^2(q^2=0)$ 

[arXiv:1210.3927]

[arXiv:1404.7772]

## NA48/2

### Search for A' in $\pi^0$ Dalitz decay: $\pi^0 \to A' \gamma \to e^+ e^- \gamma$

- Data from 2003-2004 run, large flux of tagged  $\pi^0$  from  $K^{\pm} \rightarrow \pi^{\pm} \pi^0$
- Search for A' in invariant e<sup>+</sup> e<sup>-</sup> mass (~ 1.2% mass resolution): analysis in progress
- Searches from K+  $\rightarrow \pi^+ A' \rightarrow \pi^+ l^+ l^-$  are also in progress [arXiv: 0903.3130]





[E. Goudzovski: MesonNet workshop, 2013]

## PHENIX

### PHENIX detector @ BNL RHIC : Search for A' in $\pi^0$ / $\eta$ Dalitz decay

- 1.4M e<sup>+</sup> e<sup>-</sup> pairs in p+p(2006) and d+Au (2008) datasets
- Mass resolution ~ 3 MeV
- Background well under control: "cocktail" of hadron decays
- Future plans:
  - Increase statistics adding 2009 p+p dataset
  - Use 2014 Au + Au dataset for vertex search



### ALICE

### ALICE detector @ CERN LHC: search for A' in $\pi^0$ / $\eta$ Dalitz decay

- e<sup>+</sup> e<sup>-</sup> pairs from p+p (276M) and p+Pb (85M) datasets
- Mass resolution ~ 1%
- Background well under control: "cocktail" of hadron decays



### ALICE

### ALICE detector @ CERN LHC: search for A' in $\pi^0$ / $\eta$ Dalitz decay

- e<sup>+</sup> e<sup>-</sup> pairs from p+p (276M) and p+Pb (85M) datasets
- Mass resolution ~ 1%
- Background well under control: "cocktail" of hadron decays



## Very promising sensitivity from ALICE upgrade



## CMS/ATLAS

### Search for A' in exotic Higgs Decay

• Kinetic mixing Z-A'





CMS limits (ATLAS similar)

- Unoptimized limit almost competitive with dedicated precision measurements
- 14 TeV run with 300 fb<sup>-1</sup> may be sensitive to very low BR

31 [arXiv:1312.4992]

## CMS/ATLAS

### Search for A' in exotic Higgs Decay

- Kinetic mixing Z-A'
- Non-SM Higgs decay to an A' pair, each decays to an isolated lepton pair





95 % CL limit (model-independent!) on

$$\sigma(pp o h o 2a) imes \mathcal{B}^2(a o 2\mu) imes lpha_{gen}$$

 $\alpha_{\text{gen}}$ : kinematic and geometric acceptance (on generator level)

## Dark photons and dark matter

### **Model:**

- A' interacts with SM γ trough kinetic mixing
- Dark sector particle  $\chi$  interacts with A'

4 parameters:  $M_{A'},~M_\chi,~arepsilon,~g_d$ 

A' production:  $\sigma \propto arepsilon^2$ 





A' decay:



**Second scenario: invisible decay** (not discussed in this talk)