Gordon Research Conference
Photonuclear Reactions

Heavy Photon Search experiment at JLAB

Rafayel Paremuzyan, on behalf of HPS collaboration
University of New Hampshire

Holderness, NH August 7 - 12
Introduction

\[
\mathcal{L} = \mathcal{L}_{SM} + \frac{\epsilon}{2} F_{Y,\mu\nu} F'_{\mu\nu} + \frac{1}{4} F'_{\mu\nu} F'_{\mu\nu} + m_{A'}^2 A'_{\mu} A'_{\mu}
\]

Kinetic Mixing

\[\gamma \times \hspace{1cm} A'\]

ϵ is the mixing strength

\[\gamma \times \hspace{1cm} A'\]

generated by heavy particles interacting with γ and A'

Many Dark Matter searches are based on this hypothesis
Producing A' in fixed target experiments

Since A' “can” couple to electric charge, then it is possible to expect it to be produced in a Bremsstrahlung process.

A' production

\[\sigma \propto \frac{e^2 Z^2}{m_{A'}^2} \]

Prodution of Timelike photon (radiative Tridents)

Similiar kinematics for fixed $M(e^- e^+)$

Angle: Forward

Energy: takes almost all the beam energy

\[\theta_{A'} \approx \max \left(\frac{\sqrt{m_{A'} m_e}}{E_0}, \frac{m_{A'}^{3/2}}{E_0^{3/2}} \right) \]

\[\frac{E_{A'}}{E_{beam}} \approx 1 - \max \left(\frac{m_e}{m_{A'}}, \frac{m_{A'}}{E_0} \right) \]

\[\frac{\sigma(eA \rightarrow e'A' \rightarrow e^- e^+)}{\sigma(eA \rightarrow e'\gamma^* \rightarrow e^- e^+)} = \left(\frac{3\pi e^2}{2N_f \alpha} \right) \frac{m_{A'}}{\delta m} \]

From O. Moreno’s Thesis

Bethe Heitler

Much larger cross section, But very different kinematic
The CEBAF, Hall B and HPS

CEBAF Energy: 2.2 GeV/pass
Simultaneous delivery to 4 Halls

5 pass

Hall A
Hall C

Hall B

Alcove

HPS
HPS experimental setup

Chicane system with 3 dipole magnets

4 μm tungsten target

Electromagnetic Calorimeter

442 PbW0₄ Crystals

Initiates the trigger (Main, and 3 diagnostic)

Measures particle’s energy

Resolution $\frac{4\%}{\sqrt{E}}$ at 1 GeV

Silicon Vertex Tracker

6 layers of silicon

1ˢᵗ layer of silicon is at 0.5 mm from the beam

Measures charged particle’s momentum

Vertical hit resolution ≈ 6 μm

Horizontal hit resolution ≈ 60 μm (1st 3) and ≈ 120 μm (3 other layers)
HPS reach

180 approved days

Opportunistic runs:
Run only after work hours (2015)
And only on weekends (2016)

2015 Spring:
- Beam current: 50 nA
- Beam energy: 1.05 GeV
- 30% of proposed amount of production data

2016 Spring:
- Beam current: 200 nA
- Beam energy: 2.3 GeV
- 77% of proposed amount of production data

Prompt decay, but large coupling

Find a peak over a large background

Small coupling, but longer decay time

No background, few events are enough
2015 run

1.05 GeV

Goal: 30 mC

Achieved: 10 mC with SVT at 1.5 mm, 10 mC with SVT at 0.5 mm
2016 run

Goal: 120 mC

2.3 GeV Only weekends

Achieved: 92.5 mC 6.3×10^9 triggers (77% of proposed running)
Beam properties

Before moving SVT to 0.5 \(mm \) beam properties were extensively studied

Good Beam position stability

Narrow vertical beam size at the target: \(\approx 50 \, \mu m \)

Horizontal profile

Vertical beam position distribution

Vertical profile

Width: \(45 \, \mu m \)
Beam motion studies

Small vertical beam motions ($\sim 0.5\ mm$) can damage silicon.

Signals from four halo counters summed up and as an input sent to Fast ShutDown card.

Integration time: $1\ ms$

Placing harp wire close to the beam, with fast Struck scaler, we have measured fast beam motions.

We have estimated the fast motion amplitude: less than $20\ \mu m$.
2016 Ecal performance

Cosmic gains for initial calibration

18 MeV per crystal

Time difference between two clusters

Time offsets were calibrated wrt “precise” RF time

σ = 330 ps

Beam bunch structure
2016 SVT performance

Hit Efficiency for Layers 1-6

Cluster Energy Over Track Momentum

Momentum resolution is $\sim 7\%$ at 1 GeV
Final selection sample

Bump hunt: search for a peak over $M(e^-e^+)$ background

Preliminary
1.05 GeV beam

2.3 GeV beam
2015 Analysis

We need this for bump hunt

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Proposal value</th>
<th>Measured value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam current</td>
<td>50 nA</td>
<td>50 nA</td>
</tr>
<tr>
<td>SVT occupancy</td>
<td><1%</td>
<td>1%</td>
</tr>
<tr>
<td>DAQ/trigg. rate</td>
<td>18 kHz</td>
<td>19 kHz</td>
</tr>
<tr>
<td>Pair mass res. @ 34 MeV/c²</td>
<td>1.5 MeV</td>
<td>1.5 MeV</td>
</tr>
<tr>
<td>Pair vertex res. @ 40 MeV/c²</td>
<td>4.4 mm</td>
<td>4.6 mm</td>
</tr>
</tbody>
</table>
Blind analysis

Blind analysis: 10% of the data, 74 nb^{-1}

Most significant Poll

$m_{A'} = 27.525$ MeV

Bump hunt in the mass range 20-60 MeV

90% confidence level

Background: 7-th order polynomial
Signal width is fixed according to mass resolution
Summary

- HPS experiment allows heavy photon search through bump hunt and displaced vertex search
- HPS has completed successfully data taking in 2015 and 2016
- 165 days still remain: We expect next physics runs in 2018 and later
- Data analysis demonstrated good ECal and SVT performance during these runs, and instrumentation papers are in preparations for beamline, SVT and Ecal.
- Analysis codes are now close to be finalized, and we expect 1st publications before the end of 2016