Heavy Photon Search Electromagnetic Calorimeter

Holly Szumila-Vance On behalf of the Heavy Photon Search Collaboration Old Dominion University, Department of Physics

> APS April Meeting, 13 April 2015 Baltimore, MD

Heavy Photons

Additional U(1) symmetry in nature -> new gauge boson!

<u>Kinetic mixing</u> could be the leading interaction between the Standard Model and Dark Sector!

 $e^{-} + {}^{183}W \rightarrow A' + X \rightarrow e^{+} + e^{-} + X$

Heavy Photons

HPS Experiment

Jefferson Laboratory

Hall B

Detectors:

- SVT: tracks particles, measures momentum and vertex
- ECal: triggers events, measures energy
- Magnetic fields bend particles horizontally
- Each detector is separated vertically to avoid "sheet of flame"

Electromagnetic Calorimeter (ECal) Characteristics

Features:

APD

upgrade

Upgraded from

5x5 mm²

to

10x10 mm²

- 442 PbWO₄ scintillating crystals
- Large Area Avalanche Photo Diodes (APD) for readout
- Light Monitoring System (LED)

Single PbWO4 crystal

Crystal face dimensions: 1.3x1.3 cm²

5

Design and Simulation, Resolution

- Energy
- Position
- Opening angle from target

Invariant mass:

$$m_{A'}^2 \cong 2E_1 E_2 (1 - \cos \theta)$$

(Excluding 9mm edge)

For 100 MeV A' mass and 1 GeV leptons:

Mass resolution

).5 T B-field	ECal alone	$\sigma_{\rm E} / {\rm E} = 3.6\%, \sigma_{\theta} \approx 6.3 {\rm mrad}$	6.5 MeV
	SVT alone	$\sigma_{\rm p} / {\rm p} \approx 3\%, \sigma_{\theta} \approx 2.5 {\rm mrad}$	3.7 MeV
	ECal and SVT combined	$\sigma_{\rm p} / {\rm p} \approx 3\% \oplus \sigma_{\rm E} / {\rm E} = 3.6\%$	3.4 MeV

Cosmic Calibration (Low Energy)

Ecal in Hall B, JLab

- Data in **raw** FADC mode, integrated over 80 ns window offline
- Energy ≈ 18 MeV/ crystal (simulation)

Cosmic Calibration (Low Energy)

0

- Fit each crystal's integrated peak
 with convolution of Landau,
 Gaussian
- ^{0.1} Locate peak of the fit, numerically
- Gain = Energy (MeV)/Peak (FADC)

Beam Energy Calibrations (High Energy)

E

- 1) Beam Energy Electrons (1.92 GeV, Dec 2014)
- High energy calibration point
- Limited acceptance
- Agreement with cosmic gains!

2) Energy calibration using SVT Track momentum

- Covers full range of energies and positions
- Coming soon!! (Spring 2015)

 Cosmic gains used for beam energy electron clusters:

Timing

GeV 50C Commissioned use of Flash ADCs for signal readout 40C Verified time walk corrections Energy. well-correlated Two-cluster events (correlated 300 events pairs) for resolution and timing Cluster 200 studies **Cluster timing studies** 100 0.2 0ò ^{1.2} ^{1.4} ^{1.6} ^{1.8} ² [GeV] 0.2 0.6 0.8 2.2 0.4 Single Crystal Seed vs 1 Crystal 40 35 30 Beam enters Hall B at 25 499 MHz We can significantly 20 reduce accidentals! 15 10 15 -15 -10 10 Time_crystal_1 – Time_crystal_2 [ns] 10

Conclusions

- Electronics upgrades for ECal installed and working
- Allowed trigger to work at start of beam
- Low energy calibration using cosmic ray muons (18 MeV/crystal)
 - Resolved voltage and hardware issues
 - Measured gains, generally uniform
- High energy calibration using beam energy electrons (2 GeV clusters)
 - Gains consistent with cosmic gains within 5%
- Time resolution in 2 cluster events
 - Can be used to reduce accidentals
 - FADC time granularity 4 ns

The ECal is commissioned and ready!

ECal + SVT Acceptance

Color corresponds to angle with respect to crystal axis.

with at least 3 SVT layers hit

Cosmic Geometry Cut

Energy deposited in single crystal

	hit	
no hit	hit	no hit
	hit	

Rates					
	Simulation	Actual			
Trigger	4.5 Hz	5-6 Hz			
Cuts		MIP energy cut (scintillator) removes 70%			
	Geometry cut removes 90%	Geometry cut removes 90%			
Per crystal	~9 mHz average, 4 mHz side crystals	~4 mHz average, 2 mHz side crystals			