The Heavy Photon Search Experiment

Matt Solt SLAC National Accelerator Laboratory

April 14, 2019

Introduction

- A heavy photon (or dark photon, or A') is a **hypothetical vector boson** that couples weakly to electric charge
- The Heavy Photon Search (HPS) is a **fixed target experiment** at Jefferson Lab dedicated to searching for this hypothetical vector boson, an A'
- HPS uses two distinct methods to search for A's a **resonance search** and a displaced vertex search Induces a weak effective coupling of *e* to SM fermions Suppose nature contains an additional Abelian gauge Kinetic mixing term arises where the symmetry U'(1) SM photon mixes with an A' through interactions of massive fields $F^{Y,\mu\nu}F'$ $\mathcal{L} = \mathcal{L}_{SM}$

Heavy Photon as a New Light Force Carrier

Heavy Photon Signatures in HPS

Heavy Photon Signatures in HPS

The Heavy Photon Search Experiment

- HPS is a **fixed-target experiment** for **visibly decaying dark photons** using the CEBAF electron beam (1-12 GeV) in Hall B at Jefferson Lab
- Very forward A's can be produced in a process analogous to Bremsstrahlung in a thin W foil $x = \frac{E_{A'}}{E_{beam}} \sim 1$
- Large dipole magnet spreads e+e- pairs and provides momentum measurement

6

Silicon Vertex Tracker

- SVT measures trajectories of e+e- and reconstructs mass and vertex position
- 6 layers of silicon microstrips (~0.7% radiation length per layer)
- Each layer has axial/stereo strips for 3D hit position
- SVT is split to avoid "sheet of flame"; Also, very large scattered beam backgrounds!
- Silicon is very close to beam for good forward coverage

Trident Backgrounds

• Radiative tridents have identical kinematics to signal; constitute an irreducible background

Trident Backgrounds

- Radiative tridents have identical kinematics to signal; constitute an irreducible background
- Bethe-Heitler (BH) tridents have softer e+e- pairs, but still dominant in signal region

Trident Backgrounds

- Radiative tridents have identical kinematics to signal; constitute an irreducible background
- Bethe-Heitler (BH) tridents have softer e+e- pairs, but still dominant in signal region

2015 & 2016 Engineering Runs

Data Run	Beam Energy (GeV)	Beam Current (nA)	Beam Time (days)	Total Charge (mC)	SVT Position (mm)
2015 Engineering Run	1.05	50	1.7	10	0.5
2016 Engineering Run	2.3	200	5.4	92.5	0.5

SLA

Resonance Search Results

- 2015 Bump Hunt results are published
- No significant bumps found, consistent with other experiments excluded

10

10

Ge/

Events/ 0.00125

10

·*••,•••••

+++++++++

Vertex Event Selection		Cut	Cut Value	%cut	%cut core	%cut tails	
		Fit quality	track $\chi^2/dof < 6$	24	-	-	
		Max track momentum	$P_{trk} < 75\% E_{beam}$	11	9	20	
	track	Isolation		4	1	14	
	track	kinks in L1 and L2	9	7	16		
	vertex	beamspot constraint	$bsc\chi^2 < 10$	28	22	57	
Goal is to reduce/eliminate backgrounds at large z		beamspot - unconstrained	$bsc\chi^2$ -unc $\chi^2 < 5$	15	15	15	
		maximum P _{sum}	$< 115\% E_{beam}$	0.5	0.5	0.8	
		vertex projects to target	elliptical $3\sigma_{x,y}$	2	1	16	
		Ecal SVT matching	$\chi^{2} < 10$	5	4	10	
		track Ecal timing	< 4ns	4	4	5	
•	ecal	2 cluster time diff	< 2ns	6	6	9	
	physics	momentum asymmetry	< 0.5	3	3	5	
	event	max shared hits in e^+ track	< 5 shared hits	9	9	10	
Tracking and vertexing work very well!		4Pmax single track +Isolation cut +Track kink cut +Bac Vik chi2 out +Bac Vik chi2 out +Bac Vik chi2 out +Bac Vik chi2 out +Dama chi2 diff out +Paum chi2 out +Cluster Kin me diff +inomenium asymmetry +Do shared hits -Do and thits -Do and thits -Do and thits		 	+Pmax single +Ibolation cut +Track kink of +Basc vtx hi2 +Basc vtx hi2 +Paum <1.2 c +Vtx projects +unatch chi2 +cluster kink i +cluster kink of +cluster kink of +cluster kink of +pos shared h	track t Dut diff cut ti b larget ti b larget ti b arget ti b arget ti b arget ti b larget ti b arget ti b arget ti ti b arget ti b arget ti ti b arget ti ti b arget ti ti ti ti ti ti ti ti ti t	
unconstrai	unconstrained z vertex [mm]			unconstrained mass [GeV] 1:			

Vertex resolution is limited by multiple scattering

SLA

SLA

SLAC

Additional Backgrounds Beyond Zcut

backgrounds

unconstrained mass [GeV]

Additional Backgrounds Beyond Zcut

 Measurement is limited by multiple scattering, but events past zcut are mainly due to rare double large Coulomb scatters (left) and picking up the wrong L1 hit

Vertex Analysis Final Results

• Optimum Interval Method is ideally used for small signal where signal shapes are known, but background is not sufficiently known (HPS, direct DM detection, etc.)

arXiv:physics/0203002v2

Upgraded HPS for Future Running

- Small upgrade projects will be installed at start of 2019
 - new tracking layer (improved vertex resolution)

• upgraded trigger (improved signal acceptance)

VZ Resolution

Vertexing Analysis Future

- Preliminary results using a neural network show rejection of high z backgrounds and improved signal yield!
- Possibly sensitive to Strongly Interacting Massive Particles (SIMPs) in both 2015 and 2016 datasets The SIMP Miracle

Conclusion

- Heavy photons are well-motivated as a force which mediates LDM-LDM and LDM-SM interactions
- HPS has successfully completed two engineering runs at two different beam energies (1.06 GeV in 2015 and 2.3 GeV in 2016)
- Displaced vertex search technique works for HPS!
 - Resonance search also shown to be successful
 - More results coming soon for 2016 data
- HPS upgrades are small projects but provide dramatic improvements (construction/installation underway). HPS is on the JLab run schedule for 9 weeks at 4.4 GeV in 2019 with upgrades!

HPS Collaboration

May 3 - 5, 2017 Jefferson Lab • Newport News, VA

HPS Detector

downstream of the CLAS12 detector

Comparison with MC

• Data (left) and MC (right) have reasonable agreement at equivalent luminosity

2015 & 2016 Engineering Runs

2015 Engineering Run 50 nA at 1.06 GeV 1.7 days (10 mC) of physics data

2016 Engineering Run 200 nA at 2.3 GeV 5.4 days (92.5 mC) of physics data 180 days of data taking approved by JLab PAC! 27

Beam Backgrounds

- Background is dominated by electron scattering in the target
- Detector (vertical) acceptance down to +/- 15 mrad (which means L1 of SVT is
 0.5 mm from beam axis!)
- This provides challenges for occupancies, data rates, and radiation tolerances

Jefferson Laboratory and CEBAF

- JLab (Newport News, VA) has the Continuous Electron Beam Accelerator Facility (CEBAF) that can simultaneously deliver intense electron beams of different energies to 4 experiment halls
- 1.1 or 2.2 GeV per pass up to 12 GeV and 2 ns bunch pulse
- Provides small, stable beam spot with minimal halo

