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Introduction

o1 A

e A heavy photon (or dark photon, or A’) is a hypothetical vector boson that
couples to electric charge. Motivated by many sub-GeV dark matter models

e The Heavy Photon Search (HPS) is a fixed target experiment at Jefferson Lab
dedicated to searching for this hypothetical vector boson, an A’

e HPS uses two distinct methods to search for A’s - a resonance search and a

displaced vertex search (focus on vertex search) WIMPs are running
e _out of room!

Lighter dark matter requires a new, light force carrier!
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Heavy Photon Primer

B. Holdom Phys. Lett., B166:196-198, 1986
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Suppose nature contains an L= Lsuy —F'WF;W 4 m,%vAIMAL
additional Abelian gauge symmetry 4
U'(1) (analogous to EM) Y
dp e
A’ 8
This gives rise to a kinetic mixing
¢~ | Two Parameter Model:

term where the SM photon mixes
with a new gauge boson (an A’)

Induces a weak effective coupling of
ge to SM fermions
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Existing Heavy Photon Constraints

Large coupling searches are generally
“bump hunts” for m(I"1”) resonances

A’s with small coupling 1
CT X —
€ mA/

are long-lived
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Probing New Heavy Photon Territory

10~
e The center is a highly motivated, yet

unprobed region of parameter space 1075

PHENIX . (8

o Small production cross-section Mﬂ?ﬂ‘

NA48/2

.. . . —6 -
o  Short, but finite livetime 10 ‘\1 {

e HPS - a fixed target precision vertexing B
experiment attempting to probe this =y, 0
o Large prompt QED backgrounds 10-8
o A’ kinematics require sensitive detector

components to be 0.5 mm from the beam -9
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HPS Apparatus

® Electromagnetic Calorimeter (Ecal) provides e+e-

trigger with precision timing \ /

e Silicon Vertex Tracker (SVT) measures trajectories \ / SVT
of e+e- and reconstructs mass and vertex position — L_ RRAR

e Dipole magnet spreads e+e- pairs and provides RRR
curvature for momentum measurement KRR KR




Jefferson Laboratory and CEBAF

o1 A

Integrated current X livetime (mC)
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e JLab (Newport News, VA) has the Continuous Electron Beam Accelerator Facility

different energies to 4 experiment halls
e 2.2 GeV perpassuptol2GeVand 2 nsbunch pulse
e Provides small beam spot with small tails (~107°)

SVL@L5 mm SVT @ 0.5 mm e

2016 Engineering Run
200 nA at 2.3 GeV

5.4 days (92.5 mC) of physics data
unplanned CEBAF down 1000
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Trident Backgrounds

e Radiative tridents
o ldentical kinematics to A’s; constitute an
irreducible prompt background
o Provide reference for expected signal rate
do(e=Z — e Z(A —1117)) 3re? ma

do(e=Z — e~ Z(v* = It17))  2N.pa dm
e Bethe-Heitler (BH) tridents

o  Softer e+e- pairs, but still dominates the
signal region
e Converted photons in tracker or target
o  Simple cuts eliminate about 80% of these

e+e- pairs with minimal signal loss
e Distinguishing the prompt QED tridents
from displaced signal is the challenge of
the analysis

Radiative

Nucleus




Displaced Vertex Search Event Selection

o1 A
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e Displaced vertex search is blinded with the selection tuned on 10% of the data
e Two main backgrounds from prompt trident processes: large Coulomb scatters in
layer 1 of the tracker and mis-tracking

o  Require strict selections on track quality and vertex quality & require layer 1 hits
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Displaced Vertex Search Signal Region

dN/dz [1/mm]
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Displaced Vertex Search Signal Region

dN/dz [1/mm]
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Displaced Vertex Search Backgrounds

Did we achieve the expected level of

P
background necessary for a search® Reconstructed 7 vs Mass

o YES! A major accomplishment (for mass @%2
greater than 70 MeV) 60 \:%@%J\@v Data
?
What about mass less than 70 MeV: 50 @v@@ SR

N
o

N
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o This excess is not observed in MC

w
o

o  Most likely due to mis-tracking that is not
currently properly modeled in MC

Reconstructed z (mm)
=

o This is currently under investigation

o

How much signal do we expect?

o  ~0.5 events at peak sensitivity, not

e e e ]
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enough for A’ exclusion
o  Limitis currently under review Reconstructed m(e+e-) (GeV)
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A’s with Longer Livetimes

e A’s with longer livetimes will have e+e- daughters

L1L2

that may miss layer 1 of the tracker
e Divide analysis into L1L1 (both particles hit L1) and
L1L2 (one particles misses L1) categories
e Additional backgrounds for L1L2
o Hit inefficiencies

o  Large Coulomb scatters in inactive Si
O Brem conversion in tracker Si

e L1L1 category was shown previously. L1L2 was
recently unblinded, but is not public yet
e L1L1+L1L2 combined result will be the final result



The Future of HPS

e Analysis from 2015/2016 motivated several
simple upgrades
o Add a tracking layer (Layer 0) between target

and current first layer
o  Dramatically improves vertex resolution, hence

the vertex reach
® Probing other models with displaced vertices

such as Strongly Interacting Massive Particles

(SIMPs)
e HPSis approved for 180 days of running
©  Analysis from runs in 2019 and (future) 2021
are expected to yield exclusions, and potential

discovery, of A’s
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Conclusion

o1 A
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e Heavy photons are well-motivated as the force carrier which mediates
LDM-LDM and LDM-SM interactions

e HPS has successfully completed both the displaced vertex and resonance
searches for the 2016 Engineering Run at 2.3 GeV. Publication is expected soon

o Displaced vertex search technique works for HPS!
o Informs future exclusion potential for higher luminosity runs with detector upgrades

e Existing data from the 2019 run and future data from the 2021 run with minor
detector upgrades are expected to yield real exclusions for the A" model

o  See Alic Spellman’s talk on July 13 at 3:00 pm for more detail

15


https://indico.cern.ch/event/1034469/contributions/4432298/

Thank You!

HPS Collaboration

May 3 - 5, 2017
Jefterson Lab ¢ Newport News, VA
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HPS Projected Reach With Upgrades

HPS_SC File: svt_top_scan_0143.asc

Analyze from HPS_t counter
top_mot_pos1 = 2.340 mm
top_mot_pos2 = 6.357 mm
top wire dist=1.935 mm
top_beam_Y =-0.075 mm
top_beam_X =-0.099 mm
top_beam_o, = 0.0221 mm
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4.55 GeV beam:
Achieved excellent
beam at the target.
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Silicon Vertex Tracker

e SVT measures trajectories of e+e- and reconstructs mass and vertex position

® 6 layers of silicon microstrips (~0.7% radiation length per layer)

e Each layer has axial/stereo strips (100 mrad) for 3D hit position

e SVTis split to avoid “sheet of flame”; Also, very large scattered beam backgrounds!
e Silicon is very close to beam for good forward coverage (2 mm from the beam!)

® L4-1L6 are double wide for acceptance purposes

Linear shift motion system used to Hall B Pair Spectrometer
Built at control the gap between SVT volumes ppvacumm chamber

Vacumm feed-throughs for
power, data and control

18



Resonance Search Results

10°
10°

10*

-—k

-t —_
@ o
N

Local p-Value

1073

—
S
A

107°"

Preliminary results for the resonance

search for the 2016 Engineering Run
o  Blinded analysis - event selection
tuned on 10% of the full data set
o  No significant excess found
o  Preliminary limits are consistent

W|th several earller experiments
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Other Possible Signatures at HPS
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Can we probe other models? Strongly
Interacting Massive Particles (SIMPs) are one
such example, motivated by SIMP miracle

Hidden Sector

The SIMP Miracle

n n
" " \/
(heat dumped into SM)
. /\
T SM SM

“Cannibalism”

mass

pions “r" =7 ,

. . : Wy 0
vector mesons “V" =p° , w, ¢,

arXiv:1402.5143

A
14
™

AI*

long-lived

Proposes an additional SU(3) symmetry in a
hidden sector. Allows for self-interacting
DM and more complex structure
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L1L1 Data/MC Comparison
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Displaced Vertex Search Signal Region

o1 A
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e Start with a single mass slice and fit
the background spectrum

dN/dz [1/mm]
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Heavy Photon Kinematics and Design Considerations

A’s can be produced in a process analogous to Bremsstrahlung
A’s take most of beam energy - decay products are forward with small opening angle
Detector acceptance must be very forward (very close to beam plane)

Small couplings -> small cross-section (rates). Need high intensity beam

B EA’ =
€
Nucleus E = beam energy

typically a few degrees!



The Existence of Dark Matter

o1 A

e There is clear evidence for the existence of dark matter (DM)
e The fundamental nature and origin of DM is a central puzzle in particle physics
® SM can’t account for DM. What are some ideas for what DM could be?

Observations

. R (x 10001y)

Galactic Rotation Curves Gravitational Lensing Cosmic Microwave Background

DM makes up ~85% of the total mass in the universe. Weakly interacting massive
particles (WIMPs) is most popular model due to the so-called “WIMP Miracle”
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