First Results from the Heavy Photon Search

Omar Moreno
on behalf of the HPS Collaboration

JLab Physics Seminar
Newport News, VA
May 3, 2017
There is strong evidence for the existence of Dark Matter, but remains undetected.

Weakly Interacting Massive Particle (WIMP) Dark Matter are a motivated candidate but searches for them in the most favorable areas have yielded nothing … will be ruled out or found by SuperCDMS, LZ or LHC in the coming years.
Light Dark Matter (i.e. DM MeV-GeV range) is the next most reasonable candidate but requires a new force to achieve the correct thermal relic (WIMP’s limited by Lee-Weinberg Bount to 2 GeV).

Given how complex the Standard Model is, why should we expect Dark Matter to be any simpler? What would a dark force look like?
If nature contains an additional Abelian gauge symmetry, $U'(1)$

This gives rise to a kinetic mixing term where the photon mixes with a new gauge boson ("dark/heavy photon" or A') through the interactions of massive fields \rightarrow induces a weak coupling to electric charge

Coupling strength can have a wide range. If $U'(1)$ is embedded in a Grand Unified Theory (e.g. $SU(5)$) then the kinetic mixing can be generated through the interaction of split multiplets

$$\epsilon \sim \frac{g_Y g_D}{16\pi^2} \ln \left(\frac{m_\Phi}{m_{\Phi'}} \right) \sim 10^{-3} - 10^{-1}$$

$$\epsilon \sim 10^{-6} - 10^{-3}$$
$U'(1)$ can be broken $\rightarrow m_{A'} > 0$

Possible origin for mass: related to m_z by small parameter

e.g. SUSY+kinetic mixing
scalar coupling to SM Higgs:

$m_{A'} \sim \sqrt{\epsilon} m_z \approx \text{MeV} - \text{GeV}$

Mass range also motivated astrophysical anomalies
Searching for a Heavy Photon

If there are photons, there will also be heavy photons - M. Graham

$$\sigma \sim \frac{\alpha^3 Z^2 \varepsilon^2}{m^2}$$

$$\sigma \sim \varepsilon^2$$

An image shows the diagrams for e- Fixed Target, p Fixed Target, and Colliders. The e- Fixed Target diagram includes a process involving a nucleus and the reaction $$e^- A' \rightarrow e^- + e^+$$, while the p Fixed Target diagram shows a process with a meson $$\pi^0, \eta$$, and the reaction $$\gamma A' \rightarrow e^+ + e^-$$.

Colliders include the NA48/2 and BaBar experiments.
Most constraints come from “bump hunt” searches looking for a resonance in the e^+e^- invariant mass spectrum.

As coupling decreases, A' becomes long lived → constraints can be placed using beam dump experiments.

\[
gCT \propto \frac{1}{\epsilon^2 m_A'^2}
\]

Existing Constraints

- E774/E141/Orsay/E137/U70
- NA48/2
- APEX
- BaBar
- KLOE
- PHENIX
- HADES
- KLOE
- Bump Hunt
- Long Lived

Image from arXiv:1406.2698
Fixed Target Kinematics

Since dark photons couple to electric charge, they will be produced through a process analogous to bremsstrahlung off heavy targets subsequently decaying to l^+l^-. Kinematics are very different from bremsstrahlung:

- Production is sharply peaked at $x \approx 1 \rightarrow A'$ takes most of the beam energy
- A' decay products opening angle, $m_{A'}/E_{\text{beam}}$

Resonance Search (Bump Hunt)

Look for an excess above the large QED background \rightarrow

Large signal required so limited to large coupling.

Displaced Vertex + Bump Hunt

Long lived A' will have a displaced vertex \rightarrow Will help cut down prompt backgrounds but limited to small coupling.

The HPS experiment was designed to make use of such a production mechanism to search for a heavy photon using two methods:

Toy MC
Two physics backgrounds collectively known as **tridents**

Radiative
- Irreducible.
- Kinematically identical to A' for $m(e^+e^-) = m_{A'}$, and can be used to understand expected A' rates.

$$
\frac{d\sigma(e^-Z \rightarrow e^- Z (A' \rightarrow l^+l^-))}{d\sigma(e^-Z \rightarrow e^- Z (\gamma^* \rightarrow l^+l^-))} = \frac{3\pi\epsilon^2 m_{A'}}{2N_{\text{eff}}\alpha \delta m}
$$

Bethe-Heitler
- Dominant but is also kinematically distinct to the $A' \rightarrow$ One of the electrons is produced forward the other one is soft.

Background vs. Signal Kinematics

- A'
- Positron momentum (GeV)
- Electron momentum (GeV)
HPS Design Considerations

The A' decay products opening angle is small

✓ Need to be detected in the very forward region

Maximizing the acceptance to low mass A' decays requires placement of the detector close to the beam plane

✓ Need small beam size with minimal halo

Bump Hunt: Requires good mass resolution to fight high backgrounds

Displaced Vertex: Distinguishing A' decay vertices as Non-prompt requires good vertex resolution

✓ Both require a tracking system and magnet that are placed as close to the target as possible

✓ Minimize tracker material to reduce multiple scattering and improve resolutions

Small coupling \rightarrow small cross-section

✓ Requires high intensity beam

✓ High occupancy will require fast readout and trigger system
Beam Backgrounds

Beam backgrounds dominate occupancy. Mitigating backgrounds requires:

✔ High currents, thin targets to minimize scattering
✔ Operation in vacuum to eliminate secondaries
✔ DC beam to spread out background in time
✔ Fast Ecal to trigger on e^+e^- pairs at high rate in short window

$B = \frac{4 \text{ MHz/mm}}{2 \text{ @ 15 mm in SVT Layer 1}}$

Beam e^-/month @ $z=10 \text{ cm}$
The HPS Apparatus

- **Pair Spectrometer**
 - Measures momentum and vertex precisely.

- **Silicon Vertex Tracker (SVT)**
 - Split into two volumes to avoid intense flux of scattered beam electrons.
 - Measures momentum and vertex precisely.

- **Vacuum Chambers**
 - Beam travels through vacuum in order to avoid beam-gas interactions.

- **Electromagnetic Calorimeter**
 - Used for triggering and particle ID.

- **Tungsten Target**
 - Thin target to reduce multiple scattering.

- **Linear Shift Motion System**
 - Allows adjustment of deadzone between SVT volumes.

- **High intensity e^- beam**
 - Courtesy of CEBAF @ JLab.

- **$\sim 10^{-3} X_0$**

- **Installed within the Hall B alcove at Jefferson Lab downstream of the CLAS12 detector**
Continuous Electron Beam Accelerator Facility

Simultaneous delivery of **intense** electron beams of different energies to four experimental halls.

- **Hall A, C:** $I_{\text{beam}} < 100 \ \mu$A, **Hall D:** $I_{\text{beam}} < 5 \ \mu$A, **Hall B:** $I_{\text{beam}} < 500 \ \text{nA}$
- With energy upgrade, $E_{\text{beam}} = n \times 2.2 \ \text{GeV}$, $n \leq 5$ up to a maximum of 11 GeV (12 GeV for Hall D)
- Beam delivery is nearly continuous \rightarrow 2 ns bunch structure
- Capable of providing small beam spot with small tails which will help improve vertexing

Beam halo/tails 10^{-7}

Counts/nA

Counts $\rightarrow 10000$
Silicon Vertex Tracker

<table>
<thead>
<tr>
<th>Layer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>z position from target (cm)</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Stereo angle (mrad)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Nominal dead zone in y (mm)</td>
<td>± 1.5</td>
<td>± 3.0</td>
<td>± 4.5</td>
<td>± 7.5</td>
<td>± 10.5</td>
<td>± 13.5</td>
</tr>
<tr>
<td>Material budget</td>
<td>.7%</td>
<td>.7%</td>
<td>.7%</td>
<td>.7%</td>
<td>.7%</td>
<td>.7%</td>
</tr>
</tbody>
</table>

Six layers of pairs of Si microstrip sensors → One axial and the other at small angle stereo (50 & 100)

- Layer 1-3: single sensor
- Layer 4-6: double width coverage to better match Ecal acceptance
- 36 sensors
- 180 APV25 chips
- 23,004 channels
Readout Electronics: APV25

- Originally developed for CMS
- Radiation tolerant
- Low noise (S/N>25)
- 40 MHz “Multi-peak” 6 sample readout allows for shaper output reconstruction
- 2 ns resolution

<table>
<thead>
<tr>
<th># Readout Channels</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Pitch</td>
<td>44 μm</td>
</tr>
<tr>
<td>Shaping Time</td>
<td>50 ns nom. (adjustable)</td>
</tr>
<tr>
<td>Output Format</td>
<td>multiplexed analog</td>
</tr>
<tr>
<td>Noise Performance</td>
<td>$270 + 36 \times C(\text{pF})^2$</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>345 mW</td>
</tr>
</tbody>
</table>

Diagram showing APV25 chip layout and waveforms.
SVT DAQ

Hybrid
- APV25
- Clocking & Control

Front End Board
- Amp
- ADC
- ADC RX

RCE Platform
- Sample Framing
- Data Reduction
- Data Buffer
- Timing & Trigger
- Event Building
- ECal TDAQ
- ROC Application
ECal

- 442 PbWO$_4$ crystals coupled to avalanche photodiode readout
- FADC readout at 250 MHz → allows for a narrow trigger window (8ns)
- Trigger and DAQ capable of a rate > 100 kHz
Trigger

Crate Trigger Processor
Contains cluster finding algorithm. Searches for clusters in every 3x3 array of crystals. If sum exceeds threshold and is isolated, amplitude, position, time and hit are reported to SSP.

Trigger Supervisor
Generates trigger signal

Sub-System Processor
Searches for pairs that within an 8 ns window and applies a topological selection

Flash ADC
Samples Ecal crystal APD’s @ 250 MHz. If signal crosses threshold, integrated amplitude and crossing time is sent to CTP

HPS Calorimeter (442 Channels):
HPS Engineering Runs

Two successful JLab engineering runs
✔ Spring 2015: 50 nA, 1.056 GeV electron beam (night and weekend running)
✔ Spring 2016: 200 nA, 2.3 GeV electron beam (weekend running)

Goal: Understand the performance of the detector and take physics data.
✔ For the 2015 run, data was taken with the Silicon Vertex Tracker (SVT) in two configurations: active edge at 1.5 mm and 0.5 mm from the beam plane
✔ 2015: 10 mC with the SVT at 1.5 mm and 10 mC (1.7 PAC days) at 0.5 mm
✔ 2016: 92.5 mC (5.4 PAC days) with the SVT at 0.5 mm

The results shown in this talk used the full 2015 Engineering run dataset.
Beam Quality

Successful running of the HPS apparatus requires a high quality beam with very low halo.

- \(\sigma_x \sim 100 \mu m \) to 500 \(\mu m \): Spreads the target heat load to avoid damage.
- \(\sigma_y < 50 \mu m \): Required to keep occupancies down and for vertexing.

 Beam profile and position was measured using a harp 234 cm upstream of the target.

Fast Shut-Down was implemented in order to stop the beam in \(\sim 5 \) ms if halo counter rates increased above threshold.
Use Coulomb scattered beam electrons to measure the energy resolution of the calorimeter → $\sim 4\%$

Good time resolution allows for ps Cluster coincident time resolution used to identify e^+e^- pairs with high accuracy

$\sigma_t = \frac{188}{E(\text{GeV})} \oplus 152\text{ ps}$
SVT Performance

- SVT momentum scale is within 1% of expected (1.056 GeV) showing that SVT is well aligned
- Momentum resolution 6.8%
- t_0 resolution ~ 2 ns
- Tracking efficiency $\sim 95%$
Determined the resolution as a function of mass using A' and Møller Monte Carlo
From data, use the Møller invariant mass distribution to measure the mass resolution
Scale the MC mass resolution parameterization to match the data observation.

Data Møller invariant mass is within 10% of Monte Carlo

Scale MC to match Data

~ Linear in search range
Comparing Data and Monte Carlo

Good agreement between Data and MC is needed to calculate the amount of radiative tridents in our sample

Comparing Data and Monte Carlo revealed a new source of background → Wide Angle Brem

✓ Conversions of photons produced in the target and first few layers of the SVT can mimic a trident e^+e^- pair

Once WAB’s were included, rates agree at high energy sum → disagreement at low mass may be due to detector inefficiencies
Suppressing Wide Angle Bremsstrahlung

Missing Layer 1 Hit
A majority of conversions will occur in layer 1 of the Silicon Vertex Tracker → positron will be missing a layer 1 hit
Layer 1 requirement removes 68% of WABS from final event sample! After all cuts, > 80% of WABs are rejected.

Positron Track Distance of Closest Approach
If a conversion occurs in the silicon, the positron track will extrapolate to the side of the nominal target position.

Pt Asymmetry
Because the conversion electron is missing there will be a p_t imbalance.
Bump Hunt Selection

Apply kinematic and goodness of track and vertex fit cuts to clean up accidentals. Reduces contamination from accidentals to < 1%

Requiring the sum of the e+e- pair momentum to be greater than 0.8 GeV greatly reduces the number of Bethe-Heitler background in our final sample.
Final invariant mass distribution

Final invariant spectrum contains 20.7 Million events taken at 0.5 mm
✔ Search uses 1.7 PAC days worth of data
✔ Histogram used in resonance search is composed on 2000, 0.5 MeV bins
Resonance Search Overview

- Search for a resonance within a window in the mass range between 18 MeV and 95 MeV by scanning the e^+e^- invariant mass spectrum in 1 MeV step sizes.
- Pseudo-experiments were used to set the optimal search window size $\rightarrow 11\sigma_{\text{mass}}$ at the edges and $17\sigma_{\text{mass}}$ in the center.
- Maximize the Poisson likelihood within the range using a composite model with the signal described as a Gaussian and a 7th order Chebyshev polynomial to model the background.
- Use Likelihood ratio to quantify significance of any excess i.e. “bump”.
- Determine the 2σ signal upper limit at each mass hypothesis by inverting the likelihood ratio.
- Translate the signal upper limit into the coupling-mass phase space.
Look Elsewhere Effect

We are doing multiple fits across our invariant mass spectrum so we are bound to find a bump at some point → The look-elsewhere effect (stats world → Bonferroni correction)

✔ Apply all previously described cuts to MC dataset
✔ Smooth the resulting MC invariant mass distribution to create a PDF
✔ Generate 10,000 toy distributions and perform a resonance search on each.
✔ Choose the smallest p-value from each scan, rank them and calculate the quantile
Establishing whether the signal+background model is significantly different from the background-only model is typically done using the profile likelihood ratio and test statistic q_0

$$q_0 = \begin{cases} -2 \ln \frac{\mathcal{L}(0, \hat{\theta})}{\mathcal{L}(\hat{\mu}, \hat{\theta})} & \hat{\mu} > 0 \\ 0 & \hat{\mu} < 0 \end{cases}$$

$$p = \int_{q_{0, obs}}^{\infty} f(q_0 | 0) dq_0$$

Use toy MC to determine the look-elsewhere correction

Fit Results

p-value $= 0.0071$
Most Significant Bumps

Mass hypothesis = 51 MeV

p-value = 0.0071

Search window width

Residual

Mass hypothesis = 88 MeV

p-value = 0.0079

Search window width

Residual
Power Constrained 2σ Limits

✓ Guards against setting a limit when no experimental sensitivity is expected
✓ Start by determining unconstrained upper limit, μ_{UL}
✓ Generate background only pseudo-data sets
✓ Fit each pseudo-data set with signal+background model using the same method described before and calculate upper limit \rightarrow generate distribution of upper limits
✓ From the distribution of upper limits, calculate the median, μ_{median}

$$\mu_{pc} = \max(\mu_{UL}, \mu_{\text{median}})$$
Radiative Fraction

Translating the signal upper limit into the mass-coupling phase space requires knowledge of the fraction of radiative events in our event sample → use Monte Carlo to parametrize the radiative fraction as a function of mass.

\[\epsilon^2 = \left(\frac{S_{\text{max}}}{m_{\pi^+}} \right) \times \left(\frac{2N_{\pi^+} \alpha}{8\pi} \right) \]

Preliminary
Upper Limit on Coupling Strength

$\alpha_{\mu+/-}^{2\sigma}$

$E774/E141/Orsay/E137/U70$

$A1$

$KLOE$

$PHENIX$

$APEX$

$BaBar$

$KLOE$

2015 $Engineering$ Run -1.7 PAC $Days$

α_{e}

$E774/E141/Orsay/E137/U70$
Systematics

<table>
<thead>
<tr>
<th>Systematic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass resolution</td>
<td>~10%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>~1%</td>
</tr>
<tr>
<td>MC Background</td>
<td>~5%</td>
</tr>
<tr>
<td>Theory cross-section</td>
<td>~1.0%</td>
</tr>
<tr>
<td>Electron (Positron) Efficiency</td>
<td>>95%</td>
</tr>
<tr>
<td>Fitter Systematics</td>
<td>~1%</td>
</tr>
</tbody>
</table>

Study of systematics is still ongoing but will not dramatically impact final result.
Bump Hunt Experimental Reach

HPS has been approved for its full time of running (180 PAC Days)!

First extended will take place in 2018

2015 Engineering Run
1.7 PAC days @ 1.05 GeV

2018-2020 Physics Run
4 Weeks @ 2.2 GeV
4 Weeks @ 4.4 GeV
HPS Upgrades

Vertex reach is worse than we had projected →
No vertex reach expected using 1.5 days of data
✔ Vertex decay efficiency assumed constant out to 10 cm
✔ MC used to make initial projections did not use the correct acceptance

Modest upgrades will allow recovery of reach for future runs
✔ The layers of the SVT will be moved closer to the beam → Increase acceptance
✔ Add an additional thin layer to the SVT at 5 cm → Improves vertex resolution and vertex efficiency
✔ Implement a positron only trigger → Will allow recovery of some of the reach lost due to the ECal hole.
Summary and Outlook

The Heavy Photon Search has successfully completed engineering runs in 2015 and 2016
✔ Detector performance was found to be as expected
✔ An additional source of background (WAB’s) was found and mitigated
✔ HPS is fully approved for its full time

Several analyses are ongoing
✔ 2015 Bump hunt analysis is now complete
✔ 2016 Bump hunt analysis and 2015/16 Vertex analysis are ongoing
 ✔ One vertex analysis thesis using the 2015 data has been completed, another one will be completed soon.

Upgrades are being proposed that will help HPS extend its reach
Backup
WAB MC vs Data
Positron Trigger

Almost 100% of e^- have $x > 90$.

Trident Simulation Data

Fake tracks

Positive
Negative
Tot. charged

10^6
10^5
10^4
10^3
10^2
10^1

Total charged particle rate at $x > 90$ mm is less than 4KHz

In combination with Hodoscope and Ecal, trigger rate will drop from 17 Khz to about 4 KHz
Vertex Efficiency

$A'(50\text{MeV})$ decay at 2.2 GeV