Omar Moreno **SLAC**On behalf of the Heavy Photon Search Experiment U.S. Cosmic Visions: New Ideas in Dark Matter University of Maryland March 23-25 2017 #### What is a Heavy Photon? Consider a theory in which nature contains an additional Abelian gauge symmetry, U'(1) Holdom, Phys. Lett. B166, 1986 $$\mathcal{L} = \mathcal{L}_{\text{SM}} + \underbrace{\left[\frac{\varepsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu}\right]} + \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} + m_{A'}^2 A'^{\mu} A'_{\mu}$$ This gives rise to a **kinetic mixing** term where the photon mixes with a new gauge boson ("dark/heavy photon" or A') through the interactions of massive fields \rightarrow **induces a weak coupling to electric charge** ## **Searching for a Heavy Photon** Since dark photons couple to electric charge, they will be produced through a process analogous to bremsstrahlung off heavy targets subsequently decaying to l^+l^- Kinematics are very different from bremsstrahlung - ✓ Production is sharply peaked at $x \approx 1 \rightarrow A'$ takes most of the beam energy - \checkmark A' decay products opening angle, $m_{A'}/E_{beam}$ The HPS experiment was designed to make use of such a production mechanism to search for a heavy photon using two methods: #### **Resonance Search (Bump Hunt)** Look for a excess above the large QED background → Large signal required so limited to small coupling. #### **Displaced Vertex + Bump Hunt** Long lived A' will have a displaced vertex \rightarrow Will help cut down prompt backgrounds but limited to high coupling #### **HPS Design Considerations** The A' decay products opening angle is small ✓ Need to be detected in the very forward region Maximizing the acceptance to low mass A' decays requires placement of the detector close to the beam plane ✓ Need small beam size with minimal halo **Bump Hunt:** Requires good mass resolution to fight high backgrounds **Displaced Vertex:** Distinguishing A' decay vertices as Non-prompt requires good vertex resolution - ✓ Both require a tracking system and magnet that are placed as close to the target as possible - Mass and vertex resolution will be dominated by multiple scattering so tracker material needs to be minimized Small coupling → small cross-section - Requires high intensity beam - ✓ High occupancy will require fast readout and trigger system #### The HPS Apparatus upstream of the CLAS12 detector 5 #### **HPS Engineering Runs** HPS has successfully completed two engineering runs at JLab - ✓ First took place in the Spring of 2015 using a 50 nA, 1.056 GeV electron beam - ✓ Second took place in the Spring of 2016 using a 200 nA, 2.3 GeV electron beam **Goal:** Understand the performance of the detector and take physics data. - ✓ For the 2015 run, data was taken with the Silicon Vertex Tracker (SVT) in two configurations: active edge at 1.5 mm and 0.5 mm from the beam plane - ✓ 2015: 10 mC with the SVT at 1.5 mm and 10 mC at 0.5 mm - ✓ 2016: 92.5 mC with the SVT at 0.5 mm The results shown in this talk used the unblinded portion (500 uC or ~74 nb⁻¹) data taken at 0.5 mm. ## **Backgrounds** The search for an A' involves looking for a narrow resonance in the e^+e^- invariant mass spectrum on top of a large, continuous background composed of several components #### **Accidentals** True e+e- pairs will have time-coincident clusters in the calorimeter. Can be suppressed using time cuts and cuts used to remove scattered beam electrons. ECal Cluster Time (ns) ■Photon Line ECal Hole Wide Angle Bremsstrahlung (WAB) Beam $e^$ e^+ from pair produ e⁻ from pair production escaped detection Conversions of photons a trident e+e- pair **Suppressing Wide Angle Bremsstrahlung** #### Missing Layer 1 Hit A majority of conversions will occur in layer 1 of the Silicon Vertex Tracker \rightarrow positron will be missing a layer 1 hit Layer 1 requirement removes 68% of WABS from final event sample! After all cuts, > 80% of WABs are rejected. #### **Positron Track Distance of Closest Approach** If a conversion occurs in the silicon, the positron track will extrapolate to the side of the nominal target #### #### P. Asymmetry Because the conversion electron is missing there will #### **2015 Engineering Run Performance** The 2015 engineering run has demonstrated that HPS is ready to do a meaningful search for heavy photons - \checkmark Hall B beamline was capable of delivering a small beam spot , low beam halo with high stability \to allowed placing tracker 0.5 mm from the beam - Excellent Ecal time and energy resolution allows for the efficient selection of true e+e- pairs - ✓ Vertex resolution was as expected and sufficient to conduct a search for a displaced A' #### e+e- Mass Resolution Data Møller invariant mass is - ✓ Determined the resolution as a function of mass using A' and Møller Monte Carlo - ✓ From data, use the Møller invariant mass distribution to measure the mass resolution - Scale the MC mass resolution parameterization to match the data observation. #### **Bump Hunt Event Selection** Apply kinematic and goodness of track and vertex fit cuts to clean up accidentals. Reduces contamination from accidentals to < 1% Requiring the sum of the e+e- pair momentum to be greater than 0.8 GeV greatly reduces the number of Bethe-Heitler background in our final sample. #### **Resonance Search Overview** - Search for a resonance in the mass range between 17 MeV and 90 MeV by scanning the e⁺e⁻ invariant mass spectrum - Pseudo-experiments are used to set the optimal search window size - Maximize the Poisson likelihood within the range using a composite model with the signal described as a Gaussian and a 7th order Chebyshev polynomial to model the background - ✓ Use Likelihood ratio to quantify significance of any excess i.e. "bump" - \checkmark Determine the 2σ signal upper limit at each mass hypothesis by inverting the likelihood ratio - ✓ Translate the signal upper limit into the coupling-mass phase space Establishing whether the signal+background model is significantly different from the background-only model is typically done using the profile likelihood ratio and test statistic q_0 $$q_0 = \begin{cases} -2\ln\frac{\mathcal{L}(0,\hat{\theta})}{\mathcal{L}(\hat{\mu},\hat{\theta})} & \hat{\mu} > 0\\ 0 & \hat{\mu} < 0 \end{cases}$$ $$p = \int_{q_{0,obs}}^{\infty} f(q_0|0) dq_0$$ Use toy MC to determine the look-elsewhere correction 1σ global @ ~1.5x10⁻² #### **Fit Results** No significant bump was found! #### **Most Significant Bumps** The two bumps with the smallest p-values #### **Power Constrained 2σ Limits** Use power constrained limits → Require that the experiment has enough sensitivity to a signal yield before excluding ## **Upper Limit on Coupling Strength** ## **Status of Displaced Vertex Search** Vertex search using 2015 data is still ongoing One thesis has been completed, another one will be completed soon. Reach is worse than we had projected \rightarrow No vertex reach expected using 1.5 days of data - Vertex decay efficiency assumed constant out to 10 cm - MC used to make initial projections did not use the correct acceptance ## Modest upgrades will allow recovery of reach for future runs - ✓ The layers of the SVT will be moved closer to the beam → Increase acceptance - ✓ Add an additional thin layer to the SVT at 5 cm → Improves vertex resolution and vertex efficiency - ✓ Implement a positron only trigger → Will allow recovery of some of the reach lost due to the ECal hole. ## **Bump Hunt Experimental Reach** ## **Summary and Outlook** The Heavy Photon Search has successfully completed engineering runs in 2015 and 2016 - Detector performance was found to be as expected - ✓ An additional source of background (WAB's) was found and mitigated - ✓ HPS is now fully approved for its full time Several analyses are ongoing - ✓ 2015 Bump hunt analysis is currently under review and will be unblinded. - ✓ 2016 Bump hunt analysis and 2015/16 Vertex analysis are ongoing Upgrades are being proposed that will help HPS extend its reach # Back Up #### Silicon Vertex Tracker Six layers of pairs of Si microstrip sensors \rightarrow One axial and the other at small angle stereo (50 & 100) - ✓ Layer 1-3: single sensor - ✓ Layer 4-6: double width coverage to better match Ecal acceptance - ✓ 36 sensors - ✓ 180 APV25 chips - ✓ 23,004 channels ## **Silicon Microstrip Sensors** #### Developed for D0 RunIIb upgrade - ✓ Radiation tolerant: expect fluence of 4.8x10¹⁵ e⁻ in 6 months of running - ✓ Breakdown voltage: ~1000 V - < 1 %X₀ per layer | Cut dimensions (L×W) | $100~\mathrm{mm} \ge 40.34~\mathrm{mm}$ | |------------------------------|---| | Active area (L×W) | $98.33~\mathrm{mm} \ge 38.34~\mathrm{mm}$ | | Readout (Sense) pitch | $60 (30) \mu m$ | | # Readout (Sense) strips | 639 (1277) | | Breakdown voltage | > 1000 V | | Depletion voltage | > 130 V | | Bias Resistor Value | $0.8 \pm 0.3~\mathrm{M}\Omega$ | | AC Coupling Capacitance | > 12 pF/cm | | Total Interstrip Capacitance | $< 1.2 \mathrm{\ pF/cm}$ | | Defective Channels | < 1 % | #### **Readout Electronics: APV25** #### Originally developed for CMS - Radiation tolerant - ✓ Low noise (S/N>25) - 40 MHz "Multi-peak" 6 sample readout allows for shaper output reconstruction - ✓ 2 ns resolution ## **SVT Support, Cooling and Services** #### **SVT DAQ** ## **Electromagnetic Calorimeter** - Comprised of 442 PbW04 crystals coupled to avalanche photodiode readout - FADC readout at 250 MHz → allows for a narrow trigger window (8ns) - ☐ Trigger and DAQ capable of a rate > 50 kHz #### **Trigger** #### **Crate Trigger Processor** Contains cluster finding algorithm. Searches for clusters in every 3x3 array of crystals. If sum exceeds threshold and is isolated, amplitude, position, time and hit are reported to SSP. **Trigger Supervisor** Generates trigger signal TS #### Flash ADC Samples Ecal crystal APD's @ 250 MHz. If signal crosses threshold, integrated amplitude and crossing time is sent to CTP **Sub-System Processor** SSP **CTP** **CTP** Searches for pairs that within an 8 ns window and applies a topological selection ## X, Y and 45 degree beam profiles from Harp scan. ## **Beam Quality** Successful running of the HPS apparatus requires a high quality beam with very low halo. - σ_x ~100 μm to 500 μm: Spreads the target heat load to avoid damage. - σ_y < 50 μm: Required to keep occupancies down and for vertexing Beam profile and position was measured using a harp 234 cm upstream of the target. **Fast Shut-Down** was implemented in order to stop the beam in ~ 5 ms if halo counter rates increased above threshold. # ✓ Use MC to generate smooth invariant mass distribution → create pdf - ✓ Generated 10,000 toys and perform a resonance search on each. - ✓ Chose the smallest p-value from each scan, ranked them and calculate the quantile #### **Look Elsewhere** #### **Radiative Fraction** Translating the signal upper limit into the mass-coupling phase space requires knowledge of the fraction of radiative events in our event sample \rightarrow use Monte Carlo to parametrize the radiative fraction as a function of mass. # A'(50MeV) decay at 2.2 GeV