Searching for a Resonance with HPS Omar Moreno SLAC

On behalf of the Heavy Photon Search Collaboration

2017 American Physical Society "April" Meeting January 28-31, 2017 Washington, DC

The HPS Engineering Run

The HPS Engineering Run took place in the Spring of 2015 at JLab using a 50 nA, 1.056 GeV electron beam

- Goal: Understand the performance of the detector and take physics data.
- Data was taken with the Silicon Vertex Tracker (SVT) in two configurations: active edge at 1.5 mm and 0.5 mm from the beam plane.
- Total data taken: ~1000 nb⁻¹ with the SVT at 1.5 mm and ~1165 nb⁻¹ at 0.5 mm

This results shown in this talk used ~74 nb⁻¹ of the unblinded data taken at 0.5 mm Results using the full dataset will be published in the spring.

1

1

1

e+e- Invariant Mass Reconstruction

The search for an A' involves looking for a narrow resonance in the e⁺e⁻ invariant mass spectrum on top of a large, continuous background composed of several components

Missing Layer 1 Hit

Supressing Wide Angle Bremsstrahlung

Tracker \rightarrow positron will be missing a layer 1 hit

A majority of conversions will occur in layer 1 of the Silicon Vertex

Layer 1 requirement removes 68% of

WABS from final event sample!

Because the positron is produced in a conversion,

Final Selection

Ö

1

Mass Resolution

Data Møller invariant mass is

- Determined the resolution as a function of mass using A' and Møller Monte Carlo
- From data, use the Møller invariant mass distribution to measure the mass resolution
- Scale the MC mass resolution parameterization to match the data observation.

Resonance Search Overview

Search for a resonance in the mass range between 17 MeV and 90 MeV by scanning the e⁺e⁻ invariant mass spectrum

 Pseudo-experiments are used to set the optimal search window

Maximize the Poisson likelihood within the range using a composite model with the signal described as a **Gaussian** and a **7th order Chebyshev polynomial to model the background**

- Use Likelihood ratio to quantify significance of any excess i.e. "bump" Determine the 2σ signal upper limit at each mass
- hypothesis by inverting the likelihood ratio
- Translate the signal upper limit into the coupling-mass phase space

Fit Results

Establishing whether the signal+background model is significantly different from the background-only model is typically done using the profile likelihood ratio and test statistic q_o

$$q_0 = \begin{cases} -2\ln\frac{\mathcal{L}(0,\hat{\theta})}{\mathcal{L}(\hat{\mu},\hat{\theta})} & \hat{\mu} > 0\\ 0 & \hat{\mu} < 0 \end{cases}$$
$$p = \int_{q_{0,obs}}^{\infty} f(q_0|0) dq_0$$

Use toy MC to determine the look-elsewhere correction

No significant bump was found!

Most Significant Bumps

The two bumps with the smallest p-values

Power Constrained 2σ Limits

Use power constrained limits \rightarrow Require that the experiment has enough sensitivity to a signal yield before excluding

Radiative Fraction

Translating the signal upper limit into the mass-coupling phase space requires knowledge of the fraction of radiatives events in our event sample \rightarrow use Monte Carlo to parametrize the radiative fraction as a function of mass.

Upper Limit on Coupling Strength

Conclusion

A resonance search for an A' with a mass ranging between 17 MeV and 90 MeV and decaying to an e^+e^- pair was performed using the unblinded portion (~10% of the data) of the 2015 HPS engineering run dataset (1.7 beam days).

No significant signal was found

Preliminary, 2σ upper limits on the square of the A' coupling were set at the level of 10^{-4}

A resonance search using the full dataset will be published this spring.

1

1