
Experience with Multi-Core Optimization for Geant4-MT

Gene Cooperman
College of Computer and Information Science

Northeastern University, Boston, USA
gene@ccs.neu.edu



Achievements of Geant4-MT (MultiThreaded)

1. Plans to merge Geant4-MT into main Geant4 distribution (collaboration with Makoto
Asai, Gabriele Cosmo, Xin Dong, Daniel Brandt)

2. Geant4-MT shown to scale linearly through the 80-core level on an Intel 80-core
machine (reported by Sverre Jarp, OpenLab, CERN)

3. Geant4-MT is one of the first complex benchmarks on which the Intel MIC architecture
(Knights Tour/Knights Ferry) was tested.
From:http://www.intel.com/content/www/us/en/architecture-and-technology/
many-integrated-core/intel-many-integrated-core-architecture.html

“Consider the example of CERN OpenLab, the European Organization for Nuclear
Research. This group took advantage of the Knights Ferry kit. . . to migrate a complex
benchmark written in C++ code to the new architecture in just a few days. According to
Sverre Jarp, CTO of the CERN open lab, ‘The familiar hardware programming model
allowed us to get the software running much faster than expected.’ ”

Acknowledgment: Thanks for frequent help and encouragement of John Apostolakis for both
Geant4-MT and the older ParGeant4.

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html


History of Geant4-MT and Earlier ParGeant4

• ParGeant4 (distributed nodes on a cluster, see examples/advanced in Geant4 distro): Na-
tional Science Foundation grant ACR-9872114, “Parallel Infrastructure for Recognition
of Non-Local Patterns”, 1999–2002 (with co-PIs: Stephen Reucroft and John Swain)

• “Using TOP-C and AMPIC to Port Large Parallel Applications to theComputational
Grid”, G. Cooperman, H. Casanova, J. Hayes and T. Witzel, Proc. of 2nd IEEC/ACM
International Symposium on Cluster Computing and the Grid (CCGrid), IEEE Press,
2002, pp. 120-127 (updated version in Future Generation ComputerSystems19(4))

• 2007: Start of multi-threaded Geant4; result of Cooperman’s sabbatical at CERN

• April, 2008: “First Results in a Thread-Parallel Geant4”, Gene Cooperman (joint with
Xin Dong),Workshop on Virtualization and Multi-Core Technologies for LHC, CERN;
(later reports at Geant4 Collaboration Meetings: 2008, 2009, 2010, 2011)

• “Multithreaded Geant4: Semi-automatic Transformation into Scalable Thread-Parallel
Software”, X. Dong, G. Cooperman and J. Apostolakis,Proc. of Euro-Par 2010, Lecture
Notes in Computer Science6272, Springer, 2010, pp. 287–303

• 2012–13: Plans to incorporate Geant4-MT in main branch of Geant4(in collaboration
with Makoto Asai, Gabriele Cosmo, Xin Dong)



History of Geant4-MT and Earlier ParGeant4 (Part 2)

• 1999–: ParGeant4 (distributed Geant4): Non-disruptive: Geant4 C++ design consists
of many virtual methods; Replace one library (G4RunManager) by parallel library
(ParG4RunManager).

• 2007–: Geant4-MT (MultiThreaded Geant4): “tearing Geant4 apart”

1. Semi-automatic thread-parallelization (see thesis of Xin Dong)

2. Source-code transformation of Geant4 based on modifying GNU g++parser

3. Replace one library (G4RunManager) by thread-parallel library
(ParG4RunManager).

4. Plan for Prototype: If a new Geant4 release very 6 months, then transform Geant4
code base every 6 months

5. Current plans to modify Geant4 code base to include Geant4-MT (no more source
code transformations; Geant4-MT is maintained as part of Geant4 itself) — led by
Makoto Asai and Gabriele Cosmo



Strategy for Thread Parallelization

Note: Geant4 has 3/4 million lines of C++ code, with new release every six months. See

talk of Xin Dong for details of thread parallelism:
https://indico.fnal.gov/getFile.py/access?contribId=116&sessionId=12&
resId=0&materialId=slides&confId=4535

1. Move read-write fields of objects to TLS (thread-local storage) This data cannot be
shared by all threads. (And usethread keyword for rest)

2. Reduce memory footprint: Identify large-memory objects that canbe shared among all
threads.

3. Verify correctness: thread-shared data should now be read-only; remove write
permission to verify (Note: see issue of reproducibility on next slide.)

https://indico.fnal.gov/getFile.py/access?contribId=116&sessionId=12&resId=0&materialId=slides&confId=4535
https://indico.fnal.gov/getFile.py/access?contribId=116&sessionId=12&resId=0&materialId=slides&confId=4535


Lessons from Geant4-MT (MultiThreaded)

1. Global variables with frequent writes can cause mysterious loss of linear scaling above
12 cores (e.g. our experience withG4cout.precision)

2. Consequence:Implementations of multi-threaded malloc are not linearly scalable with
many threads!
The malloc standard requires that any thread can free a malloc bufferallocated byany
otherthread. This requires a central point of control.

• Solution: Build a custom malloc library for the common case in Geant4-MT: The
thread that allocates a buffer is the one that frees it.

3. Geant4 does lazy initialization

• Issue: Geant4 is close to trivially parallel, but only after the initializations are
completed.



Issues for All Parallelizations of Geant4

1. Multi-core implementations:Decisions about how to share fields of objects (Many
Geant4 classes include writable fields to cache intermediate computations.)

2. Multi-core implementations: Global variables with frequent writes
(e.g.G4cout.precision, even though valuenot usedwhenG4verbose not defined)

3. Reproducibility:
Random number generators: should the random seed be copied to all threads or set
independently

• For Parallel Deterministic Reproducibility: Set random seed excplicitly at beginning
of each task (each event, in case of Geant4-MT)

• To Reproduce Sequential Geant4: Set number of worker threads toone: each task
will have same thread as sequential Geant4



Speculation for the Next Big Issue

1. Future architectures all appear to stress multiple levels of amemory hierarchy:

(a) Intel MIC (Many Integrated Core)

(b) NVIDIA “Project Denver” (NVIDIA GPU + on-board ARM CPU)

(c) AMD Fusion

2. All of these architectures stressmany small and light cores.

3. Small and light cores will have small L1 and L2 caches.

4. Yet some sharable Geant4 objects require many megabytes of memory.

A possible strategy isstratified processing of eventsaccording to particle
type: Events dealing with the same type of particle can sharememory
(e.g. shared L2 cache) more easily.


