
Perspectives on
Parallelism in HEP
Frameworks

Christopher Jones
On behalf of the CMS Offline Organization

Prospective on Parallelism in HEP Transforming G4 Workshop

Future Performance
Three axes for better performance on future hardware

2

G
PG

PU

Better Utilization of CPU

Thr
ea

din
g

Prospective on Parallelism in HEP Transforming G4 Workshop

Future Performance
CPU
HEP code does a poor job of using the Cores

Lots of L1, L2 and L3 cache misses
Instruction level parallelism
Vectorization instructions
Can be utilized via C++
Requires carefully designed data structures
Good for very fine grained parallelism

GPGPU
Handled via custom languages
Needs special handling of memory
Requires the presence of the co-processor
Good for very medium grained parallelism

Threading
Requires carefully designed algorithms
Good for coarse grained parallelism

3

G
PG

PU

Better Utilization of CPU

Thr
ea

din
g

Prospective on Parallelism in HEP Transforming G4 Workshop

Present Application
CMS uses one application for all event processing
Particle generation
Simulation
Online High Level Trigger
Reconstruction
Analysis

Each event processing algorithm is encapsulated into a ‘module’
Geant4 is wrapped by one particular module

CMS’ application controls the processing
It decides which event to process next
It decides the order to call each module and passes it the proper event

Application calls specific Geant4 functions when it is Geant4’s turn to do work

4

Prospective on Parallelism in HEP Transforming G4 Workshop

Multithreading
Plan for new multithreaded application
Will process multiple events simultaneously
Will run multiple modules processing the same event simultaneously
This will all be controlled explicitly by the application

All parts need to work within one concurrency model
Present application is memory resource limited

in future may not be able to afford 2GB / CPU core
Each additional thread requires its own stack

default size on SL5 is 10MB/stack
One concurrency model will allow use of only one thread pool

minimizes memory
avoids oversubscribing available cores

Interested in Geant-MT if it can fit with this working model
Where concurrency is controlled by the experiment’s application

E.g. Application calls specific Geant methods at proper time from a thread controlled by
application

5

Prospective on Parallelism in HEP Transforming G4 Workshop

Technologies
Reviewing several high level threading technologies

libdispatch
Open source port of Apple Inc’s system

OpenMP
Built into gcc and intel compilers

Intel’s Thread Building Blocks
Cross-platform C++ library

6

Prospective on Parallelism in HEP Transforming G4 Workshop

libdispatch Scaling

7

All Modules are calling usleep
One event per module slower after 2 simultaneous events (se)
One event I/O turns over at 25se and stops growing at 44se
Fully re-entrant stays 30% faster till runs out of system threads
Single threaded runs out of memory at 800se

0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50

Throughput

Ev
en

ts
/S

ec
on

d

Number of Simultaneous Events

Single Threaded
One Event per Module
One Event I/O
Fully Re-entrant

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 100 1000 10000

Scaled Througput

Ev
en

ts
/S

ec
/S

im
ul

ta
ne

ou
s

Ev
en

t

Number of Simultaneous Events

Simultaneous Jobs
One Event per Module
One Event I/O
Fully Re-entrant

Prospective on Parallelism in HEP Transforming G4 Workshop

Time Scale
Work is beginning now

Needs to be finished and validated before LHC 2014 restart

8

