Scaling Laws, Multicore, and GEANT4 Optimization Opportunities.

Rob Fowler Renaissance Computing Institute (RENCI) University of North Carolina May 8, 2012

Context:

- At Lali Chatterjee's request, researchers from SciDAC-2 PERI took a look at GEANT4 for optimization opportunities.
 - -PERI's initial charter was on shorter term opportunities.
 - 1. log() and exp() dominate in calorimeter examples.
 - 2. Identified trigonometry "low hanging fruit" in magnetic fields.
 - 3. In all examples, the C++ method call stack is very deep.
 - 4. \rightarrow good IPC rates, #3 raises overhead vs "real work" issues.
 - -Broader issue: tension between human productivity vs. machine efficiency.
 - What objective function to use? Who decides?
 - Can we have both? E.g., domain-specific languages, ...
- This workshop is broadening the charter
 - -Current and near future multi- and many-core machines.
 - -Bigger issue: Physical constraints will radically change future systems.
 - Example: Dramatic changes needed for exascale systems.

The Memory Wall

- "Hitting the Memory Wall Implications of the Obvious." Wulf and McKee 1994. ("Reflections on the Memory Wall", McKee, CF'04)
 - -Processor speeds (clocks) were increasing exponentially.
 - -Memory speeds increasing with much smaller exponent.
 - \rightarrow Improvements to caches will only stop the bleeding temporarily.
 - \rightarrow Fundamental changes in computer architectures are needed.
- "It's the Memory, Stupid", Richard Sites, DEC (in Microprocessor Report, 1996)
- "(for a certain set of applications) processor speed is already effectively infinite compared to memory. The only relevant benchmark is Stream." – Bob Morgan, DEC (~2001).
- What's changed, if anything? Processor clock speed has leveled, but now we have multi-core and multi-threading.

Dennard Scaling of CMOS Logic.

- Series of papers 1972-1974 by Bob Dennard and others at IBM on scaling properties of CMOS logic circuits (gates and wires!).
- Linear scaling of all transistor parameters.
 - -Reduce feature size by a factor of S, typically .7/generation.
 - Including gate insulator thickness!
 - -Reduce supply voltage (Vdd) by S to keep electric field constant.
 - -Adjust doping of silicon gate region to compensate.
 - -Area shrinks by S^2 , C_{gate} and delay (1/f) reduced by S.
 - -Power \approx CV²f \rightarrow Power per gate goes down by S²
 - -Area and power track each other so power density is unchanged.
 - -For a constant die area and design density, power and power density are constant and frequency increases.

Other Aspects of Dennard Scaling.

- Wire resistance/unit length ~ S²
- Wire capacitance/unit length ~ 1
- RC delay/unit length (unrepeated) ~ S^2
- Die size (D) increases, so "long" wires increase by D
- Unrepeated wire delay ~ S²D², repeated ~ D sqrt(S)
 →Signals cannot cross the chip in one cycle.

Moore's law

Empirical observation and self-fulfilling prophesy: Circuit element count doubles every N months. (N ~18)

- Technological explanation: Features shrink, semiconductor dies grow.
- Dennard scaling: Gate delays decrease. Wires are relatively longer/slower. — Dennard scaling has not been perfect in practice and is coming to an end.
- In the past, the focus has been making "conventional" processors faster.
 - Faster clocks
 - Clever architecture and implementation \rightarrow instruction-level parallelism.
 - Clever architecture (speculation, predication, etc), HW/SW Prefetching, and massive caches ease the "memory wall" problem.
- Problems:
 - Faster clocks --> more power.
 - Power scaling law for CMOS: $P = \alpha CV^2F$, but $F_{max} \sim V$ so $P \sim F^3$
 - Where a is proportional to the avg. number of gates active per clock cycle.
 - Smaller transistors + long wires \rightarrow either slow clock, or pipelined communication.
 - More power goes to overhead: cache, predictors, "Tomasulo", clock, ...
 - Big dies --> fewer dies/wafer, lower yields, higher costs
 - Aggregate effect --> Expensive, power-hog processors on which some signals take 6 cycles to cross.

The End of Dennard Scaling and Dark Silicon

- Vdd Scaling issues
 - Initially, designers constrained by standards: 12V, 5V, 3.3V.
 - On-board power regulation now allows Vdd to be 1V or less.
 - This is getting uncomfortably close to threshold voltages.
 - Decreasing thresholds has rapidly increased leakage current/power.
 - Decreasing f allows operation with higher thresholds.
- Gate Insulator issues
 - Thickness is now ~ 5 atoms
- Useful work and duty cycles
 - Bailey and Snyder (1988) observed that a was at most a few percent for processors. If a were much larger, chips would melt.
 - Aggressive architectures have increased a to do bookkeeping, data movement, ...
- "Dark" and "dim" silicon refer to schemes to reduce a and/or f to reduce power.
 - "Turbo" modes actually throttle f when all cores are active.
 - Run power-efficient, low f, low V in highly parallel code regions.
 - Inefficient high f, high V on few cores in sequential regions.
 - Heterogeneous cores and purpose built modules w. power mangement.
 - Programmable logic and reconfigurable devices.

Little's Law and Memory.

- Classic law/lemma in queuing theory
 - (mean # in system/queue) = (arrival rate) (mean residence time)
- Communication (memory) restatement
 - (concurrency) = (bandwidth) (latency)
- → To increase bandwidth without decreasing latency, you have to increase the concurrency of the system
 - Wider channels to send more bits per operation.
 - Overlapping, i.e., pipelined, operations.

Bottleneck \rightarrow bandwidth plateaus, queuing latency dominates.

Moore's Law/Dennard Scaling Revisited for DRAM.

- As more transistors were added to processor chips, they got a lot faster.
 - -Clever architectures and on-chip concurrency.
 - -Technology: Smaller transistors are faster.
- As more transistors were added to memory chips, they got a lot bigger.
 - -Cleverness went into reliability, yield, ...
 - -Small transistors are fast, but weak (can't drive long wires).
 - -Little increase in on chip concurrency.
 - -Very low Rent's law (surface/volume ratio) exponent!

	Introduction	Size	Pins	Cycle Time	Bandwidth
DDR	2000	2 GB	168	5 ns	3.2 MB/sec
DDR2	2003	4 <i>G</i> B	184	3.75 ns	8.5 MB/sec
DDR3	2007(2009)	16 GB	240	5 ns	12.8 MB/sec
DDR4	2012(?)				25.6(?) MB/sec
renci	THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL				

Other Trends: Pins and GPU Memory

2002

2004

2005

2008

2010

2012

Implications of variations of Moore's law

- Memory-bound applications will not benefit nearly as much as the CPU-bound in commodity configurations.
- To match core concurrency, lots of memory parts need to be configured in order to get enough pins and memory buffers.
- Lots of big memory parts \rightarrow huge memory servers.
- System cost is increasingly dominated by memory cost.

Characterizing Memory Performance

- Most characterization methods use two measures
 - Memory latency (for an isolated operation)
 - Memory bandwidth (for a streaming benchmark kernel)
- 'STREAM' and 'Imbench' benchmarks widely used to measure these
- These are often treated as scalar parameters that are fundamental properties of the system
- For multi-socket, multi-core systems, these parameters only tell a part of the story

pChase

- Developed by Pase and Eckl @IBM
- Multi-threaded benchmark used to test memory throughput under carefully controlled degrees of concurrent accesses
- Each thread executes a controllable number of 'pointer-chasing' operations - a memory-reference chain
 - Pointer to the next memory location is stored in the current location.
 Grow and randomize chain to defeat cache, prefetch.
 - Dereference pointers in k independent chains concurrently, then use them.
- K=1 case measures memory latency.
- Large-k bandwidths are comparable to STREAM measurements at "common" optimization levels.
- Our Modifications
 - Added wrapper scripts around pChase to iterate over different numbers of memory reference chains and threads
 - Added affinity code to control thread and data placement
- Available at http://pchase.org

Historical Perspective: ~2004

Dell PowerEdge 1850, 2 x 3.2 GHz Pentium D Xeons 6 x 1 G DDR2 PC3200

Historical Perspective: ~2006

Dell PowerEdge 1955 2 x Intel X5150, 2 core, 2.66 GHz, (4 cores) 4 x 1GB DDR2 667Mhz

Fully-populated 4-socket Interlagos

Interlagos, 2 DIMMs per socket

Interlagos with 4 DIMMS/socket.

2-socket Sandybridge, w/o hyperthreading

2-socket Sandybridge with hyperthreading

Lessons r.e. Multi-core memory systems

- Per-socket memory bandwidth has increased dramatically.
- "First-core" memory bandwidth has increased even more!
- "Last few cores or threads" incremental memory bandwidth is, in general, poor or non-existent.
- Average per-core (thread) bandwidth has decreased.
 —So has core clock speed if all cores are active!
- Fully-populating all the DIMM slots (\$\$) on today's high end systems eases the problem.
 - -You are buying buffers and interface logic, GBs are a bonus.
 - Do you really need systems with 128 to 512 GB of memory?
 - How much memory do you buy for your 128 core chip?
 - Are you willing to pay for it?
 - —What's the business model of processor vendors if memory cost far exceeds the cost of the processor?

Thank you

Contact information:

Robert Fowler (rjf@renci.org)

* Acknowledgements US Department of Defense (DoD) DOE SciDAC SUPER Institute

