# Scaling Laws, Multicore, and GEANT4 Optimization Opportunities. 

Rob Fowler<br>Renaissance Computing Institute (RENCI)<br>University of North Carolina<br>May 8, 2012

## Context:

- At Lali Chatterjee's request, researchers from SciDAC-2 PERI took a look at GEANT4 for optimization opportunities.
-PERI's initial charter was on shorter term opportunities.

1. $\log ()$ and $\exp ()$ dominate in calorimeter examples.
2. Identified trigonometry "low hanging fruit" in magnetic fields.
3. In all examples, the $C^{++}$method call stack is very deep.
4. $\rightarrow$ good IPC rates, \#3 raises overhead vs "real work" issues.
-Broader issue: tension between human productivity vs. machine efficiency.

- What objective function to use? Who decides?
- Can we have both? E.g., domain-specific languages, ...
- This workshop is broadening the charter
-Current and near future multi- and many-core machines.
-Bigger issue: Physical constraints will radically change future systems.
- Example: Dramatic changes needed for exascale systems.


## The Memory Wall

- "Hitting the Memory Wall - Implications of the Obvious." Wulf and McKee 1994. ("Reflections on the Memory Wall", McKee, CF'04)
- Processor speeds (clocks) were increasing exponentially.
- Memory speeds increasing with much smaller exponent.
$\rightarrow$ Improvements to caches will only stop the bleeding temporarily.
$\rightarrow$ Fundamental changes in computer architectures are needed.
- "It's the Memory, Stupid", Richard Sites, DEC (in Microprocessor Report, 1996)
- "(for a certain set of applications) processor speed is already effectively infinite compared to memory. The only relevant benchmark is Stream." - Bob Morgan, DEC (~2001).
- What's changed, if anything? Processor clock speed has leveled, but now we have multi-core and multi-threading.


## Dennard Scaling of CMOS Logic.

- Series of papers 1972-1974 by Bob Dennard and others at IBM on scaling properties of CMOS logic circuits (gates and wires!).
- Linear scaling of all transistor parameters.
-Reduce feature size by a factor of S,typically .7/generation.
- Including gate insulator thickness!
-Reduce supply voltage (Vdd) by $S$ to keep electric field constant.
- Adjust doping of silicon gate region to compensate.
- Area shrinks by $S^{2}, \quad C_{\text {gate }}$ and delay (1/f) reduced by $S$.
-Power $\approx C V^{2} f \rightarrow$ Power per gate goes down by $S^{2}$
- Area and power track each other so power density is unchanged.
-For a constant die area and design density, power and power density are constant and frequency increases.


## Other Aspects of Dennard Scaling.

- Wire resistance/unit length $\sim S^{2}$
- Wire capacitance/unit length ~ 1
- RC delay/unit length (unrepeated) ~ $S^{2}$
- Die size (D) increases, so "long" wires increase by D
- Unrepeated wire delay ~ $S^{2} D^{2}$, repeated ~ D sqrt(S)
$\rightarrow$ Signals cannot cross the chip in one cycle.


## Moore's law

## Empirical observation and self-fulfilling prophesy: Circuit element count doubles every $N$ months. ( $N$ ~18)

- Technological explanation: Features shrink, semiconductor dies grow.
- Dennard scaling: Gate delays decrease. Wires are relatively longer/slower.
- Dennard scaling has not been perfect in practice and is coming to an end.
- In the past, the focus has been making "conventional" processors faster.
- Faster clocks
- Clever architecture and implementation $\rightarrow$ instruction-level parallelism.
- Clever architecture (speculation, predication, etc), HW/SW Prefetching, and massive caches ease the "memory wall" problem.
- Problems:
- Faster clocks --> more power.
- Power scaling law for CMOS: $P=a C V^{2} F$, but $F_{\max } \sim V$ so $P \sim F^{3}$
- Where $a$ is proportional to the avg. number of gates active per clock cycle.
- Smaller transistors + long wires $\rightarrow$ either slow clock, or pipelined communication.
- More power goes to overhead: cache, predictors, "Tomasulo", clock, ...
- Big dies --> fewer dies/wafer, lower yields, higher costs
- Aggregate effect --> Expensive, power-hog processors on which some signals take 6 cycles to cross.


## The End of Dennard Scaling and Dark Silicon

- Vdd Scaling issues
- Initially, designers constrained by standards: 12V, 5V, 3.3V.
- On-board power regulation now allows Vdd to be 1 V or less.
- This is getting uncomfortably close to threshold voltages.
- Decreasing thresholds has rapidly increased leakage current/power.
- Decreasing fallows operation with higher thresholds.
- Gate Insulator issues
- Thickness is now ~ 5 atoms
- Useful work and duty cycles
- Bailey and Snyder (1988) observed that a was at most a few percent for processors. If a were much larger, chips would melt.
- Aggressive architectures have increased a to do bookkeeping, data movement, ...
- "Dark" and "dim" silicon refer to schemes to reduce a and/or $f$ to reduce power.
- "Turbo" modes actually throttle $f$ when all cores are active.
- Run power-efficient, low f, low $V$ in highly parallel code regions.
- Inefficient high $f$, high $V$ on few cores in sequential regions.
- Heterogeneous cores and purpose built modules w. power mangement.
- Programmable logic and reconfigurable devices.



## Little's Law and Memory.

- Classic law/lemma in queuing theory
- (mean \# in system/queue) = (arrival rate) (mean residence time)
- Communication (memory) restatement
- (concurrency) = (bandwidth) (latency)
$\rightarrow$ To increase bandwidth without decreasing latency, you have to increase the concurrency of the system
- Wider channels to send more bits per operation.
- Overlapping, i.e., pipelined, operations.

Bottleneck $\rightarrow$ bandwidth plateaus, queuing latency dominates.

## Moore's Law/Dennard Scaling Revisited for DRAM.

- As more transistors were added to processor chips, they got a lot faster.
- Clever architectures and on-chip concurrency.
-Technology: Smaller transistors are faster.
- As more transistors were added to memory chips, they got a lot bigger.
- Cleverness went into reliability, yield, ...
- Small transistors are fast, but weak (can't drive long wires).
- Little increase in on chip concurrency.
- Very low Rent's law (surface/volume ratio) exponent!

|  | Introduction | Size | Pins | Cycle Time | Bandwidth |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DDR | 2000 | 2 GB | 168 | 5 ns | $3.2 \mathrm{MB} / \mathrm{sec}$ |
| DDR2 | 2003 | 4 GB | 184 | 3.75 ns | $8.5 \mathrm{MB} / \mathrm{sec}$ |
| DDR3 | $2007(2009)$ | 16 GB | 240 | 5 ns | $12.8 \mathrm{MB} / \mathrm{sec}$ |
| DDR4 | $2012(?)$ |  |  |  |  |
| 20ncl |  |  |  | $25.6(?) \mathrm{MB} / \mathrm{sec}$ |  |
| rencl |  |  |  |  |  |

## Other Trends: Pins and GPU Memory



芹形
of NORTH CAROLINA
at CHAPEL HILL

## Implications of variations of Moore's law

- Memory-bound applications will not benefit nearly as much as the CPU-bound in commodity configurations.
- To match core concurrency, lots of memory parts need to be configured in order to get enough pins and memory buffers.
- Lots of big memory parts $\rightarrow$ huge memory servers.
- System cost is increasingly dominated by memory cost.


## Characterizing Memory Performance

- Most characterization methods use two measures
- Memory latency (for an isolated operation)
- Memory bandwidth (for a streaming benchmark kernel)
- 'STREAM' and 'Imbench' benchmarks - widely used to measure these
- These are often treated as scalar parameters that are fundamental properties of the system
- For multi-socket, multi-core systems, these parameters only tell a part of the story


## pChase

- Developed by Pase and Eckl @IBM
- Multi-threaded benchmark used to test memory throughput under carefully controlled degrees of concurrent accesses
- Each thread executes a controllable number of 'pointer-chasing' operations - a memory-reference chain
- Pointer to the next memory location is stored in the current location. Grow and randomize chain to defeat cache, prefetch.
- Dereference pointers in $k$ independent chains concurrently, then use them.
- K=1 case measures memory latency.
- Large-k bandwidths are comparable to STREAM measurements at "common" optimization levels.
- Our Modifications
- Added wrapper scripts around pChase to iterate over different numbers of memory reference chains and threads
- Added affinity code to control thread and data placement
- Available at http://pchase.org


## Historical Perspective: ~2004




## Dell PowerEdge 1850, $2 \times 3.2$ GHz Pentium D Xeons $6 \times 1$ G DDR2 PC3200

## Historical Perspective: ~2006




# Dell PowerEdge 1955 <br> 2 x Intel X5150, 2 core, 2.66 GHz , (4 cores) <br> $4 \times 1$ GB DDR2 667Mhz 

THE UNIVERSITY

## Fully-populated 4-socket Interlagos



## Interlagos, 2 DIMMs per socket


( $8 \times 4 \mathrm{G}$ dual-rank DIMMS total)

而 of NORTH CAROLINA
at CHAPEL HILL

## Interlagos with 4 DIMMS/socket.



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

## 2-socket Sandybridge, w/o hyperthreading



## 2-socket Sandybridge with hyperthreading



THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

## Lessons r.e. Multi-core memory systems

- Per-socket memory bandwidth has increased dramatically.
- "First-core" memory bandwidth has increased even more!
- "Last few cores or threads" incremental memory bandwidth is, in general, poor or non-existent.
- Average per-core (thread) bandwidth has decreased.
-So has core clock speed if all cores are active!
- Fully-populating all the DIMM slots (\$\$) on today's high end systems eases the problem.
- You are buying buffers and interface logic, GBs are a bonus.
-Do you really need systems with 128 to 512 GB of memory?
- How much memory do you buy for your 128 core chip?
- Are you willing to pay for it?
-What's the business model of processor vendors if memory cost far exceeds the cost of the processor?


## Thank you

## Contact information:

## Robert Fowler (rij@renci.org)

\author{

* Acknowledgements <br> US Department of Defense (DoD) <br> DOE SciDAC SUPER Institute
}

