
FITS Keyword Conventions in ASC Data Model �lesSDS-7.2Jonathan McDowellJanuary 11, 1999Contents1 Introduction 31.1 FITS Implementation . 31.2 Notes on existing FITS special cases 31.3 The name of an HDU . 31.4 Extra information for compound columns 41.5 Support for preferred columns or axes 51.6 Extra information for header keys 61.7 Array keywords . 81.8 Images . 81.9 Coordinate Systems . 91.10 Coordinate systems on image block axes 101.11 Coordinate Data Descriptors: columns 111.12 Coordinate descriptors for array column axes 121.13 Keywords for recording �lters . 121.13.1 Special cases . 152 Systematic algorithm for creating descriptors 162.1 Existence of a descriptor on read 162.2 Descriptor names . 161

2.3 Descriptor component names . 172.4 Element dimensionality . 182.5 Descriptor units . 182.6 Descriptor values . 182.7 Data type . 192.8 Descriptor desc . 192.9 Display format . 192.10 Element type . 202.11 Array dimensionality . 202.12 Array sizes . 202.13 Legal range . 212.14 Transform type . 212.15 Transform values . 213 Proposed future conventions 213.1 Future enhancement for ASC `element types' 213.2 Element types . 233.3 Extra keys for header keywords . 233.4 Data Subspace keys . 24

2

1 IntroductionThis document introduces FITS header keyword conventions for use with the ASC data model. Theguiding principle used is to select defaults so that existing FITS �les should be correctly interpretedby the data model. The new keywords are as far as possible chosen to be analogous to existingFITS conventions.This document supersedes the earlier SDS-7.1 and reects the implementation current as ofJanuary 1999. It is intended for those already familiar with HEA (GSFC) FITS conventions.1.1 FITS Implementation1.2 Notes on existing FITS special cases1. Zero-width columns (e.g. 'TFORM3 = 0I') are forbidden.2. In header keywords, NaNs should be converted to a keyword with a blank value �eld:FOO = /In oating point binary table columns, IEEE NaNs are �ne.3. Use of TSCAL and TZERO is currently deprecated except for the special case of specifying un-signed integer types. Recommend use of TCRVL and TCDLT instead, with the correspondinglinear coordinate transform machinery which gives clearer information on the intent.1.3 The name of an HDUIn our software, each FITS HDU is given a unique name as follows:� If HDUNAME is present, its value is the HDU name, and we ignore EXTNAME.� If there is no HDUNAME, but EXTNAME and EXTVER are present, the name is the valueof extname concatenated with the value of extver. Example:EXTNAME = 'SPECTRUM' / Spectral dataEXTVER = 3 / Version no; ASC name will be SPECTRUM3� If there is no HDUNAME or EXTVER, but EXTNAME is present, the name is the value ofEXTNAME. We recommend that EXTNAME values not end with digits, since on copying anHDU to another �le we're likely to strip the trailing digits on the assumption they're meantto be an EXTVER.� If there is no HDUNAME or EXTNAME, we name the HDU to be "HDUn", where n is theHDU number counting the primary array as HDU1. (In earlier releases, we called it HDU0).3

1.4 Extra information for compound columnsAt the ASC's high level Data Model layer, we de�ne compound columns which may map to multipleFITS columns. This is reected in the FITS �le with extra keywords that tie the columns together.If these keywords are ignored, the columns are just seen as independent in the usual way.We propose a new set of FITS header keywords to describe the extra structure on top of the rawBINTABLE. By analogy with keywords like TTYPEn, these new keywords are indexed keywordsbeginning with a common letter M (for Meta-column). The most important keywords are MTYPEnand MFORMn, de�ned by the Common Data Model (CDM) discussion list. MTYPE4 = 'SKY',MFORM4 ='X,Y', TTYPE13='X', TTYPE14='Y' de�nes a descriptor SKY composed of columns13 and 14.To parse a table, we use the following rules:� The index subscript on the MTYPEn series of keywords does not impose an ordering. De-scriptor order is imposed by the ordering of the TTYPEi keywords of the �rst element of eachdescriptor.� Although the CDM does not require that descriptor (meta-column) components be adjacentTTYPEi columns, we will require this for the time being.� Starting with TTYPE1, we examine the next TTYPEi which has not already been markedas a component.� If the TTYPEi value appears as the �rst item in any MFORMn, we have a new compoundcolumn whose name is the value of the corresponding MTYPEn and whose component namesare the comma-separated items in MFORMn. We identify the remaining component nameswith TTYPEi values and mark those TTYPEs as components. The element dimension andelement type are inferred from the number of component names and the value, if any, ofMETYPn (see later discussion).� If the TTYPEi value does not appear in an MFORMn, we have a new (non-compound) columnwhose name is the value of TTYPEi, and whose element dimension is 1 and element type (seelater) is V.� Continue until all TTYPEs have been dealt with.The special keywords are:� MFORMn (string) is a comma-separated list of names (at least one name; zero is an error)which de�nes a composite descriptor. Each name should be either the value of one of theTTYPEn keywords (i.e. a FITS column name) or the name of a FITS keyword. MFORMnis a CDM keyword. 4

� MTYPEn (string) gives the name of the composite descriptor de�ned by MFORMn. MTYPEnis a CDM keyword.� METYPn (string) gives the Data Descriptor's element type. Initially supported types willbe `V' (value), `VU' (value with one uncertainty range), `R' (range, binned data'). `REG'(2D region string descriptor). If absent, a default value of `V' is assumed. METYPEn is anASCDM keyword. As of Jan 1999, METYPn support has not yet been implemented.� MDESCn (string) gives the Data quantity description (a comment for the compound column).If absent, the default value is the comment string following the / in the MTYPEn or, if thatis absent, the TTYPEj keyword. We have not implemented MDESCn as of Jan 1999.We note the following existing FITS keywords and their use:� TFORMj is used to store the Data Descriptor's data type and the number of elements percell, and also the string length if applicable.� TDIMj is used to store the Array Speci�cation axes.� TUNITj is used to store the Data Descriptor's unit.� TTYPEj, TTYPEj+1,.. are used to store the Data Descriptor Component Names whenDCEDIMn is more than 1.� TDISPj is used to store the Data Descriptor display format.� TLMINj and TLMAXj are used to store the legal range of values. This is used by us and byHEASARC software for �ltering and binning.1.5 Support for preferred columns or axesWe expect to implement support for preferred axes prior to launch.� CPREF (string) speci�es preferred quantities: the most interesting axes, and the ones youshould bin on if no axes are speci�ed. Its format isCPREF = 'DETX,DETY' / default axes to bin onCPREF = 'PHA(DETX,DETY)' / default axes to bin on, with weighting functionThe optional weighting function is the name of a column to weight by, which must be a singleFITS scalar column. The binning axes can include compound column names, but not arraycolumns. 5

1.6 Extra information for header keysOn reading a FITS header, all the mandatory FITS keywords and the keywords de�ning theBINTABLE/IMAGE and overlying ASC TABLE structure are parsed. All remaining keywordsare interpreted as block header keys.We introduce a new set of header keywords analagous to the TTYPEn series, for attributes.We have implemented two di�erent forms of FITS enhanced keyword support (to store more infoabout each keyword) - the `long form' and the `short form'. In the short form, info is packed intothe FITS comment keyword. In the long form, needed for long keyword names, separate keywordsare used.In all the following cases, string keywords with blank or default values should be omitted (i.e.DUNITn should not appear in the �le if the unit is blank).The short form isFOO = value / [unit] {type} descThe unit convention is as per CFITSIO. The new {type} convention, to be implemented by us inJan 1999, speci�es an intended data type for a numeric keyword, allowing us to distinguish betweenoat and double, or long and unsigned short, say. For most applications this is not importantand can be ignored, but sometimes you want to preserve the information. The values within theparentheses are'E' 4 byte real'D' 8 byte real (default for value containing decimal point)'I' 2 byte integer'J' 4 byte integer (default for value without decimal point)'U' 2 byte unsigned integer'V' 4 byte unsigned integerWe will usually omit the type information for the two default cases.We map a DM header key FOO to the following set of (long form) FITS header keywords:FOO = value / [unit] desc CDMDTYPEn = 'FOO' / CDMDUNITn = 'unit' / CDMDDISPn = 'disp' / CDMDFORMn = 'datatype' / (CDM controversial)On reading, we set the name to be FOO, the unit to be �rst the DUNITn, next the value in []after the / in FOO, �nally to blank if neither of the preceding are there. The comment is set to bewhatever is after the / in FOO with the exclusion of any [] token.For long keyword names, keyword FOO is replaced by DVALn:6

DVALn = value / [unit] desc CDMDTYPEn = 'LONG_KEY_NAME' / CDMDUNITn = 'unit' / CDMDDISPn = 'disp' / CDMDFORMn = 'datatype' / (CDM controversial)The values of n must be unique in a given HDU block, but need not be consecutive, although itwould be nicer to keep them so.NOTE: We have just heard (Jan 99) that Bill Pence is implementing a di�erentscheme, using HIERARCH keywords introduced by ESO, in CFITSIO. I haven't seenthese keywords discussed in HEA forums, so I'm awaiting more details.� DTYPEn gives the name of the Data Descriptor. This keyword must be present if any ofDUNITn, DVALn, DFORMn, DDISPn, DDESCn are present, otherwise it must be omitted.� DUNITn (string) gives the unit for the Data Descriptor. If the unit is blank, it should beomitted. The unit should also be copied to the root keyword comment as speci�ed by thenew CFITSIO convention.� DVALn (arbitrary type) gives the element value for the attribute. If the attribute name inDTYPEn is 8 characters or fewer, the attribute name will be used as the keyword nameinstead of DVALn. On reading, the data type for the Data Descriptor is inferred from theformat of the element value.� DFORMn (string), if present, gives the data type for the element, overriding the data typeinferred from the formatting of the value header keyword and the short form type convention.Omit for strings and signed numeric types.� DDISPn (string) gives the Data Descriptor recommended display format; this should be usedvery sparingly, and is not yet implemented.� DDESCn (string) gives the Data Descriptor description. If absent, the default value is thecomment string following the / in the keyword containg the value. DDESC has not yet beenimplemented.� DLMINn, DLMAXn to record the legal range of a descriptor. Default is -Inf to +Inf; onlyapplies to numeric data types. This has not yet been implemented.� MTYPEn and MFORMn and METYPn keywords may also be used to group keys.
7

1.7 Array keywordsWe provide limited support for 1-D array key descriptors. Traditionally related values such ascoe�cients of polynomials have been written using indexed keywords, e.g. COEFF1, COEFF2,COEFF3... This provides an obvious model for array valued keys. However, indexed keywords havealso been used for other purposes, so on read we cannot assume the presence of a trailing digitindicates an array keyword. Also, NAXIS and NAXISn are both de�ned keywords, and if we usedthe naive interpretation both would be descriptors with name NAXIS.� DTYPEn: We therefore require that array keys be written using the DTYPEn keyword withthe special syntax\item DTYPE3 = 'COEFF* '� Here the asterisk is used to imply a set of array keywords. The general format is DTYPEn ='NAME*'; if NAME is less than or equal to 7 characters, the values will be stored in keywordsNAME1, NAME2, NAMEm.� iDVALn: When the 'NAMEi' exceeds 8 characters, iDVALn will be used instead. Example:DTYPE4 = 'COEFFICIENT*' / Array keyword4DVAL1 = 0.001 / Coeff for n=14DVAL2 = 3.4E-6 / Coeff for n=24DVAL3 = -14.328 / Coeff for n=3� On read, the dimension of the array is equal to the largest value of i present as a NAMEi.Missing values of i are set to zero or blank; elements of the array must be all numeric or allstring.1.8 ImagesFor Image Data descriptors, the following are existing FITS keywords:� BUNIT (string) Unit of image data values (B is for 'brightness')� BITPIX (integer) coded value implies the data type.� BSCALE, BZERO values used e.g. for unsigned data types; handled by CFITSIO.We plan to introduce� BTYPE (string) Name of image data array. If absent, default to value of HDU name.� BFORM (string) as DFORMn, to impose a data type interpretation overriding the BITPIXvalue.These have not yet been added. 8

1.9 Coordinate SystemsRelevant docs:FITS standard,ftp://fits.cv.nrao.edu/fits/documents/standards/fits_standard.psftp://fits.cv.nrao.edu/fits/documents/standards/bintable_aa.psthe WCS draft document,ftp://fits.cv.nrao.edu/fits/documents/wcs/wcs.all.psand the OGIP94-006 document,http://legacy.gsfc.nasa.gov/docs/heasarc/ofwg/docs/summary/ogip_94_006_summary.html(all of which are mirrored in /proj/jcm/ASC/FITS/docs)We will store coordinate info as follows: The general transform supported by DM has the follow-ing parameters, named according to the FITS keywords used in the FITS IMAGE implementation...Dimension nTransform type (string): ctypeNumber of transform function parameters m (depends on ctype, usually = zero)Transform function parameters (doubles): prop1 to propmReference pixel: crpix1 to crpixnReference value: crval1 to crvalnReference scale: cdelt1 to cdeltnRotation angle: crota (only used in 2D case)Rotation matrix: cd(n,n)The rotation angle is zero and rotation matrix is unity for all our data at the moment. Recently,CDELT has been deprecated in favor of the CD matrix, but we are continuing to use CDELTanyway.We distinguish between the �rst transform on a particular descriptor, which is considered theprincipal transform, and subsequent transforms. Slightly di�erent keywords are used for principaland other transforms. In addition, di�erent keywords are used for transforms for the followingdescriptor cases:1) the axes of an image data array (Axis number j)2) a table scalar column (FITS column number i)3) the axes of a table array column (FITS column number i, axis p); not yet supported.4) values of an image data array (not yet supported).For the principal transform: (these are HEASARC proposed keywords)Case 1 2 39

ctype CTYPEj TCTYPi pCTYPicrpix CRPIXj TCRPXi pCRPXicrval CRVALj TCRVLi pCRVLicdelt CDELTj TCDLTi pCDLTicrota CROTAj TCROTi pCROTicd CDjj TCDii ppCDiFor subsequent transforms: (case 3 not supported; these are ADASS FITS BOF proposedkeywords)Case 1 or 2ctype CTYPEjkcrpix CRPIXjkcrval CRVALjkcdelt CDELTjkcrota CROTAjkcd CDjjkIn this case k is a single upper case letter from A to Z. We reserve the choice of the letter P toag the physical coordinate transform (IRAF's LTM/LTV) which maps original pixels to currentlogical pixels.1.10 Coordinate systems on image block axesTraditional use of CTYPE: Construction of the CTYPE keyword (or TCTYP, etc): In a classicpiece of broken design, we use CTYPE to store both the name of the coordinate descriptor quantityand the name of the projection. The hack is as follows: for now, we support only 1-D LINEARtransforms and 2-D WCS spherical projections. if the transform is not LINEAR, it must be oneof the WCS projections. In this latter case, there are a pair of CTYPEs, CTYPEn and CTYPEm(hopefully with m = n + 1). The value of each of these is an 8 byte string; the �rst 4 bytes containthe axis name padded with trailing dashes, and the last 4 bytes contain the transform code paddedwith leading dashes. The only allowed value pairs for the axis names are:RA-- DEC- EquatorialGLON GLAT GalacticELON ELAT EclipticHLON HLAT HelioeclipticSLON SLAT SupergalacticPLON PLAT PlanetaryXLON XLAT Generic latitude and longitudeWe add the extra names 10

LONG NPOL Generic with north polar angle not latitudeThis is used only with the TAN transform and is useful for a WCS for telescope o�-axis angle andazimuth.The allowed values for the transform type are:-TAN, -AZP, -SIN, -STG, -ARC, -ZPN, -ZEA, -AIR, -CYP, -CAR, -MER, -CEA, -COP, -COD,-COE, -COO, -BON, -PCO, -GLS, -PAR, -AIT, -MOL, -CSC, -QSC, -TSC.If the CTYPE value does not include the dash character '-' in byte 5, we may assume it is aLINEAR transform in which case the descriptor name is the full value of CTYPE.For the ASC DM we introduce the following extra keywords:� CNAMEn Name of axis (overrides value of CTYPEn, used in case where CTYPE is not aLINEAR transform to override the standard component names like RA and DEC; i.e. whenXLON and XLAT are present in CTYPE.)� CUNITn Unit of axis (FITS standard keyword)We also support the use of MTYPEn, MFORMn for de�ning composite axes. Their use isentirely analogous to their use with table columns.1.11 Coordinate Data Descriptors: columnsWe note the following existing HEASARC FITS keywords and their use:� TCTYPj (string) is used for the coordinate descriptor component name, (or descriptor namefor a non-composite descriptor), and transform type.� TCNAMj (string) Like CNAMEn for images.� TCUNIj (string) is used for the coordinate descriptor unit.� TCDLTj (real) is used for the Data Coordinate Transform scale.� TCRPXj (real) is used for the Data Coordinate Transform reference pixel element value.� TCRVLj (real) is used for the Data Coordinate Transform reference world element value.� RADECj (string) and EQUINj (real) are used for RA, DEC column pairs to give the system('ICRS', 'FK4', 'FK5') and equinox (2000.0, 1950.0, etc)We also want to give a name to a composite (2D) coordinate descriptor. For this we introducethe ASC-de�ned keyword 11

� MCTYPn (string) is used for the Data Coordinate descriptor name for the primary coordinatesystem attached to composite column MFORMn. In other words, if MFORM4 = 'X,Y' andTTYPE3='X', TTYPE4='Y' then the coord descriptor name is the value of MCTYP4 andthe coord descriptor component names are values of TCTYP3 and TCTYP4, with transformvalues given by TCRPX3/4 etc.1.12 Coordinate descriptors for array column axesThe following keywords are all HEASARC-speci�ed.� iCTYPj is used for the Component Name for an Axis Group Coordinate quantity correspond-ing to the i'th axis.� iCUNIj is the unit of the axis group coordinate quantity.� iCRPXj is the reference pixel value for the axis group quantity in the axis group coordinatetransform.� iCRVLj is the reference world value for the axis group coordinate quantity in the axis groupcoordinate transform.� iCDLTj is the transform scale in the axis group coordinate transform.1.13 Keywords for recording �ltersThis section describes the keywords used by the ASCDM Data Subspace code.Suppose we �lter a �le with the constraintMASS = 14.2:230.1,GRADE=1:5,10:12,14:23In the output FITS �le this will be recorded asDSTYP1 = 'MASS' / Rest MassDSUNI1 = 'kg ' / Unit for DSTYP1DSVAL1 = '14.2:230.1' / Range for DSTYP1DSTYP2 = 'GRADE' /DSVAL2 = '1:5,10:12,14:23' / Ranges for DSTYP2Note: The Data Subspace conventions are internal to ASC and are not agreed as part of theCDM.The example GRADE above but with 30 values instead of 3 would be better stored as a table,as follows: 12

DSTYP2 = 'GRADE' /DSVAL2 = 'TABLE' / Values are in a tableDSREF2 = ':GRADE_FILTER' / Name of tableand in an HDU elsewhere in the �le:XTENSION='BINTABLE'NAXIS1 = 8NAXIS2 = 30TFIELDS = 2TTYPE1 = 'GRADE_MIN'TFORM1 = '1J'TTYPE2 = 'GRADE_MAX'TFORM2 = '1J'EXTNAME = 'GRADE_FILTER'MTYPE1 = 'GRADE'MFORM1 = 'GRADE_MIN,GRADE_MAX'METYP1 = 'R'similar to the GTI table given above. The colon before the table name was recommended as partof a broader scheme to specify URLs for FITS HDUs; I'm not sure how standard it will be.When there is more than one DSS component, we need to generalize these keywords. We pre�xabbreviated versions of the keywords with the DSS component number:� iDSVALj instead of DSVALj� iDSREFj instead of DSREFj� The same �lter (value of j) in components 2 onwards must share the same name (DSTYPj),unit (DSUNIj), and data type. So we don't need keywords for those.The presence of an iDSVALj (or iDSREFj) keyword for any value of j implies the existence ofcomponent i. If iDSVALj exists but iDSVALk does not, the value of iDSVALk is assumed to be thesame as DSVALk. The idea here is that components will often have many �lters in common, andjust a couple that are di�erent.Here is an example with components: it represents a merged spectrum list with di�erent extrac-tion radii for di�erent energies.DSTYP1 = 'ENERGY' / EnergyDSUNI1 = 'keV ' / Unit for DSTYP1DSTYP2 = 'RADIUS' / Extraction radiusDSUNI2 = 'pixel' / Unit for DSTYP2 13

DSTYP3 = 'GAIN' / Calibration gainDSVAL1 = '0.1:2.0' / Range for EnergyDSVAL2 = '14' / Extraction radiusDSVAL3 = '2:' / Range for gain2DSVAL1 = '2.0:5.0,8.0:10.0' / Energy range, 2nd component2DSVAL2 = '30' / Extraction radiusThis means that the data contains energies in the range 0.1 to 2.0 keV extracted in a radius of14 pixels (around some point), and also energies in the ranges 2 to 5 and 8 to 10 keV, all extractedin a radius of 30 pixels. The data was also selected in all cases for a gain between 2 and in�nity.(there is no 2DSVAL3 so the gain for the second component is assumed to be the same as for thesecond component, i.e. DSVAL3) Datasets like this usually arise from merging two datasets with asingle component in their data subspace. One might write the above DSS as a logical expression:{ [(ENERGY in 0.1:2) AND (RADIUS = 14)] OR[(ENERGY in 2:5,8:10) AND (RADIUS = 30)] }AND (GAIN >2)Another more realistic case is multiple GTIs for di�erent ACIS chips:DSTYP1 = 'CCD_ID' / Chip numberDSTYP2 = 'TIME' / TimeDSUNI2 = 's ' / Unit for DSTYP2DSTYP3 = 'PHA ' / PHADSVAL1 = 0 / Chip ACIS-I0DSVAL2 = 'TABLE' / DSTYP2 ranges are in BINTABLE HDUsDSREF2 = ':GTI0' / Good times for chip 0DSVAL3 = '2:1024' / Good PHA range2DSVAL1 = 1 / Chip ACIS-I12DSREF2 = ':GTI1' / Good times for chip 13DSVAL1 = 2 / Chip ACIS-I23DSREF2 = ':GTI2' / Good times for chip 24DSVAL1 = 3 / Chip ACIS-I34DSREF2 = ':GTI3' / Good times for chip 35DSVAL1 = 6 / Chip ACIS-S25DSREF2 = ':GTI6' / Good times for chip 66DSVAL1 = 7 / Chip ACIS-S36DSREF2 = ':GTI7' / Good times for chip 7Note no DSUNI1 keyword is written since Chip number doesn't have a unit. Logically this DSStranslates to: 14

(PHA in 2:1024) AND {(CCD_ID = 0 AND TIME = GTI0) OR (CCD_ID = 1 AND TIME = GTI1)OR ...}1.13.1 Special casesFor back compatibility for non-compliant �les, the following special cases are recognized on readingand writing: (only the �rst is currently done by our implementation).1. On writing, if the axis name is TIME, write the data cell for the �rst DSS component asTABLE GTI. On reading, if a GTI extension exists, interpret it as a data subspace data cellon quantity TIME.2. Also calculate the sum of the GTI intervals and store as an attached attribute ONTIME,and multiply by an attached attribute DTCOR if present, to generate another attached at-tribute LIVETIME. On reading, interpret the keywords ONTIME, DTCOR and LIVETIMEas attached attributes to the TIME data subspace axis.3. Recognize the HEASARC timing keywords SCSEQBEG, SCSEQEND, DATE-OBS, TIME-OBS, DATE-END, TIME-END, ONTIME, MJD-OBS, TSTART, TSTOP, MJDREF andtheir variations, all of which are associated attributes of the TIME data subspace axis. In theabsence of a GTI record, use the start and stop times in mission time or, if no mission time isavailable, JD or MJD, as deduced from these keywords, to de�ne a single time range elementfor the data subspace.4. On writing, if the axis name is PHA, write the data cell as the indirect spec [MINCHAN:MAXCHAN].On reading, check for the MINCHAN and MAXCHAN keyword pair and interpret as a datasubspace data cell on axis PHA.5. A coordinate system on a data subspace axis whose components are RA and DEC will have itsreference world element repeated as header keywords RA NOM and DEC NOM. On reading,these keywords will be recognized as the component names for a 2D data subspace axis onsky pixel position.Note: Writing data subspaces to FITS �les could be complicated. Suppose we have a datasubspace cell which needs to be written as a table (e.g. GTI). We normally would write all structuralinformation �rst, before writing the rows of the main Table Data section, but now we need to writea separate BINTABLE extension. Perhaps the best solution is to make an initial pass through thedata subspace �rst and write all data subspace extensions before beginning the main ASC Tableextension. 15

2 Systematic algorithm for creating descriptorsThis section was written to help the ASCDM implementors, but I'll include it in here in case itclari�es the earlier sections.I'll describe this from the point of view of both writing and reading a header. The centralattribute of any descriptor is its name, so we look for that �rst. I then give the order of priority foreach piece of information. Thus the column descriptor name is given as 'MTYPE,TTYPE', meaningthat on read you �rst look for MTYPE, and then if there is no MTYPE you look for TTYPE; onwrite you start from the other end and use TTYPE if you can, but if TTYPE is insu�cient toencode the information (e.g. it's a vector column) you use MTYPE.2.1 Existence of a descriptor on read� Descriptors that may exist without explicit names in the �le are the image data descriptorand image axis descriptors. Their existence is forced by the presence of an image block.� Column descriptors must have corresponding TTYPE or MTYPE keywords� Key descriptors must have a DTYPE keyword or an ordinary FITS header keyword that isnot an ASCDM-reserved name.� Coordinate descriptors must have a CTYPE (TCTYP, iCTYP) or CCTYP keyword.2.2 Descriptor names� Column descriptor: MTYPE if composite, else TTYPE� Key: MTYPE, else DTYPE if needed, else keyword name� Image data descriptor: BTYPE, else EXTNAME, else "IMAGE".� Filter: DSTYP� Coord attached to column: MCTYP, else TCTYP� Image axis coord: MTYPE, else CCTYP, else CTYPESpecial case: if a column descriptor has an attached coordinate system TCTYP which is nota LINEAR transform, it must be a vector column of dimension 2, paired with some other columnwith a matching TCTYP, even if there is no MFORM keyword. For example if we have
16

TTYPE3 = 'X'TTYPE4 = 'Y'TCTYP3 = 'RA---TAN'TCTYP4 = 'DEC--TAN'we pretend that the keywords MTYPE1 = 'POS', MFORM1 = 'X,Y', MCTYP1 = 'EQPOS' wereactually present. The column component names are 'X', 'Y' and the coordinate component namesare 'RA', 'DEC'. The game is:� I have a TTYPE; is it part of an MFORM?� If not, does it have a TCTYP that needs a partner? RA|TAN needs DEC{TAN as itspartner.� If so, make up an MTYPE name and an MCTYP name for it (see below).� If not, it is a simple column and TTYPE gives its name.Now how will we assign these MTYPE and MCTYP names? We are going to recognize thefollowing special cases:Component names Default composite nameX,Y POSX, *Y *, for all *RA,DEC EQPOSGLON,GLAT GALPOSand in all other cases do POSn, where n is some unique integer. This means that TDETX,TDETY maps to TDET.2.3 Descriptor component names� Column descriptor: TTYPE� Key: DTYPE or keyword name� Image dd: not supported� Filter: DSCPT� Column coord: TCTYP� Axis coord: CTYPE
17

Here's an interesting question. For 2D �lters, the natural thing is to specify a single DSTYPand DSVAL, with the DSVAL being a region string. But we need somewhere to put two (optional)component names and internally we need to point to two associated column descriptors. So do wego with the MTYPE paradigm and have MDTYP1 = 'POS', MDFOR1 ='X,Y', DSTYP1 = 'X',DSTYP2 = 'Y' and instead of having two DSVALs have an MDVAL with MDVAL1 = 'circ 2 302'? Or do we make DSTYP the thing that can be composite, and have instead DSTYP1 = 'POS',DSVAL1 = 'circ 2 30 2', DSCPT1 = 'X,Y' ? I think the latter is much more consistent with therest of data subspace, and I like it better, so I'm going with it for now. Comments welcome.2.4 Element dimensionality� Column descriptor: infer from MFORM (and TCTYP) else 1� Key: always 1 for now� Image dd: always 1 for now� Filter: infer from DSCPT, not to be implemented yet� Column coord: infer from MFORM of parent� Axis coord: infer from MFORM2.5 Descriptor units� Column descriptor: TUNIT� Key: DUNIT, else Pence convention on keyword with the name� Image dd: BUNIT� Filter: DSUNI� Column coord: TCUNI� Axis coord: CUNIT2.6 Descriptor values� Column dd: current row and cell� Key: DVAL or keyword value� Image dd: image data 18

� Filter: DSVAL� Column coord: via transform� Axis coord: via transform2.7 Data type� Column dd: TFORM� Key: DFORM or infer from format of value� Image dd: BFORM, else BITPIX� Filter: DSFORM, else type of assoc-col� Column coord: infer from transform type, default double� Axis coord: infer from transform type, default double2.8 Descriptor desc� Column dd: TDESC or / comment after name keyword� Key dd: DDESC or / comment after value keyword� Image dd: BDESC or / comment after BTYPE� Filter: DSDSC or / comment after name keyword� Column coord: TCDSC or / comment after name keyword� Axis coord: CDESC or / comment after name keyword2.9 Display format� Column dd: TDISP� Key: DDISP� Image dd: not supported� Filter: not supported� Column coord: not supported� Axis coord: not supported 19

2.10 Element type� Column dd: METYP, default to V� Key: METYP� Image dd: METYP� Filter: always R� Column coord: inherit from parent� Axis coord: inherit from parent2.11 Array dimensionality� Column dd: Infer from TFORM and TDIM� Key: Always 0 for now� Image dd: NAXIS� Filter: Always 1� Column coord: Always 0� Axis coord: Always 02.12 Array sizes� Column dd: Infer from TFORM and TDIM� Key: n/a for now� Image dd: NAXISn� Filter: infer from DSVAL string� Column coord: n/a� Axis coord: n/a
20

2.13 Legal range� Column dd: TLMIN/TLMAX� Key: DLMIN, DLMAX� Image dd: not yet supported� Filter: n/a� Column coord: not supported� Axis coord: not supported2.14 Transform type� Column coord: Infer from TCTYP� Axis coord: Infer from CTYPE2.15 Transform values� Column coord: TCRVL and TCRPX and TCDLT� Axis coord: CRVAL and CRPIX and CDELT3 Proposed future conventionsIn this section I describe possible keywords that we might use in later releases; these aren't �nalbut give an idea of the directions we're considering.3.1 Future enhancement for ASC `element types'How many BINTABLE columns are used for a single ASC Table column? We will store a valueelement of dimensionality d in d separate columns of the table. A range element will require 2dcolumns, and a value with uncertainty will thus require 3d columns. A 2D region descriptor maybe stored as a string in a single column; details of the implementation are to be worked out. Theelement type is stored in a special string keyword METYPn tied to the MTYPE/MFORM keywords.If it is absent, the default type V (value) is assumed. Thus, by knowing the element dimensionalitydi and element type ti for each ASC Table column, we can assign the mapping to BINTABLEcolumns. The number of BINTABLE columns for ASC Table Column i is diNBT (ti) as tabulatedbelow: 21

ti NBT (ti) DescriptionV 1 Value onlyB 2 BinBF 1 Fixed width binS 2 Bin startSF 1 Fixed width bin startI 3 Value plus intervalR 2 Interval onlyK 2 Scale rangeKF 1 Fixed scale rangeL 3 Two sided scale (log)LF 1 Fixed two sided scaleU 2 One sided uncertaintyUF 1 Fixed one sided uncertaintyT 3 Two sided uncertaintyTF 1 Fixed two sided uncertaintyREG 1 2D regionThen the total number of BINTABLE columns required for the c columns of the ASC Table isTFIELDS = cXi=1 diNBT (ti)and the starting BINTABLE column number j for ASC Table column i isj(i) = 1 + i�1Xk=1 dkNBT (tk)The following proposed keywords are reserved for possible future ASCDM implementation.� MITYPn (string) gives the interval type for elements of type VU or R. Possible values are `[]'(default), `()', `(]', '[)'.� MULEVn (real) gives the uncertainty level, between 0.0 and 1.0, default 1.0.� MDTYPn (string) gives the data type, overriding the default data type in TFORMj. Thisallows us to add data types which are not directly supported by the FITS standard. Valuesof MDTYPn are speci�ed in the data model design document.� MUMINn gives the uncertainty lower value for a �xed uncertainty. Default CUVALn.� MUMAXn gives the uncertainty upper value for a �xed uncertainty. Default CUVALn.22

� MUVALn gives the uncertainty value for a �xed uncertainty. Default zero.� MZTYPn (string) gives the element type for the systematic zero point uncertainty.� MSTYPn (string) gives the element type for the systematic scale uncertainty.� MZMINn, MZMAXn, MZVALn give the systematic zero point uncertainty values.� MSMINn, MSMAXn, MSVALn give the systematic scale uncertainty values.3.2 Element typesTo make a column of element type INTERVAL or RANGE, go as follows:dmColumnCreateInterval(table, name, type, unit, desc, cptNames, elementType)wherename = "TIME", type = dm_DOUBLE, unit = 's', desc = 'Spacecraft Time',cptNames = { "TSTART", "TSTOP" }, elementType = dmRANGE.Suppose the next available FITS column is 4, and this is the second CDM grouped column. In theFITS �le this should map to:TTYPE4 = 'TSTART ' / TIMETFORM4 = '1D ' / Data type for column 4TUNIT4 = 's ' / Unit for column 4TTYPE5 = 'TSTOP ' / TIMETFORM5 = '1D ' / Data type for column 5TUNIT5 = 's ' / Unit for column 5MTYPE2 = 'TIME ' / Spacecraft TimeMFORM2 = 'TSTART,TSTOP' / CDM meta-columnMETYP2 = 'R' / ASC Element Type is Range3.3 Extra keys for header keywordsThe following proposed keywords are reserved for possible future implementation� DUMINn gives the uncertainty minimum value.� DUMAXn gives the uncertainty maximum value.� DITYPn (string) gives the interval type for elements of type VU or R. Possible values are `[]'(default), `()', `(]', '[)'. 23

� DULEVn (real) gives the uncertainty level, between 0.0 and 1.0, default 1.0.� DARELn (string) gives the name of the `parent' Data Descriptor to which the attribute isrelated - either the name of a column or of another attribute. This allows us to de�ne attributeswhich belong to individual columns.3.4 Data Subspace keysThe following proposed keywords are reserved for possible future implementation� DSITYPj interval type for axis j.� DSjLm, DSjUm: lower (L) and upper (U) interval values for a range. ImpliesDSj = (DSjL1:DSjU1),(DSjL2:DSjU2),...(DSjLn,DSjUn)� DSCNAMn (string): Name of coord quantity for axis group n. This and other coordinate infodefaults to the coordinate system on any table column mapping to the DSS axis.� DSCTYPj (string): Name of coord quantity component for axis j.� DSCDLTj (string): Transform scale for axis j.� DSCRPXj (real): Reference pixel value for coord transform� DSCRVLj (real): Reference world value for coord transform.� DSCUNIj (string): Unit for coord quantity� DSCj (string): Data Cell in world coord units� DSCjLm, DSCjUm: Data Cell min and max element values (shares interval type for DataDescriptor, i.e. DSITYPj).The data cell speci�cation is parsed as follows: (this is a long term goal, not to be implementedfor the time being):1. If the �rst character is numeric, [or (, the spec is a range.2. Otherwise, if the �rst (space-delimited) word is the special string TABLE, it is a table speci-�cation.3. Otherwise, it is a 2D region speci�cation. 24

4. For a range, we determine the interval type by locating the closing parenthesis. The allowedtypes are [],[),(],() representing open, closed and semi-open intervals. No parentheses meansclosed interval.5. Within the parentheses, we seek a colon to parse the string as [a:b]. If no colon is present,interpret as [a:a]. If a or b is non-numeric, interpret them as the names of other headerkeywords (an indirect range speci�cation). The purpose of the indirect range speci�cation isto allow us to continue to write back compatible �les.

25

