
1 Introduction

In its basic form, xrootd is a component based system, implemented as daemons, that

delivers data across a network. It is similar to many distributed network-based file

systems (e.g. afs, gpfs, hdfs, lustre, nfs, etc). However, it has some significant differences

that make it stand apart:

 high performance in a small memory footprint with low CPU overhead,

 uses a plug-in architecture to support a wide variety of environments,

 runs in user-mode (i.e. not root),

 uses multiple authentication mechanisms at the same time,

 clusters local and remote data servers using a federation model,

 can automatically copy data between arbitrary locations,

 decouples logical and physical name spaces,

 integrates a proxy service,

 built-in checksum support,

 offers detailed monitoring, and

 allows multi-source transfers.

Figure 1 shows xrootd components and how they related to various functions provided

by the system. This guide describes these components, how they interact, and offers

guidance along with examples on how to configure the system and build effective data

delivery environments.

Figure 1 the xrootd System

In order to fully understand xrootd, the following sections discuss the unusual features

that xrootd provides, how they impact its use, and why they are important.

2 The Background

In 2001 the BaBar experiment, a collaboration of 400 physicists from over 9 countries

studying the relationship between matter and anti-matter, decided to switch their data

analysis framework from Objectivity/DB database system to the Root framework. The

new analysis framework relied largely on structured flat files either locally accessible to

a compute node or served through a network-based file server. Flat files were seen as a

great and absolutely essential simplification to the experiment’s massive data handling

and distribution requirements.

While data handling and distribution would be simplified, the problem area shifted into

finding a file server solution that could scale to the peta-bytes of data the experiment

would generate and handle peak loads from a thousand or more simultaneous analysis

jobs. The nature of the load was driven by the peculiarities of the framework which

would perform several meta-data operations on dozens of files per job prior to

commencing analysis. This meant that any new data access system needed to sustain

thousands of transactions per second, cluster hundreds of physical data servers just to

handle the amount of data, and recover gracefully from failures expected when a

massive amount of hardware is deployed. The three main system requirements: low

latency, scaling, and recoverability, all needed to be met simultaneously; otherwise, it

was clear that the BaBar collaboration would not be able to perform data analysis in a

timely manner. Such an event would doom the experiment and the investment of

hundreds of millions of dollars. A search of systems available in 2001 reveals now, as it

did then, that no affordable commercial solution existed that could meet all three

requirements. Hence, the stage was set for the development of xrootd.

2.1 Fast Forward

Today, xrootd is being deployed in environments and for uses that were never

conceived in 2001. This speaks well for the system’s adaptability but the underlying

reason is that the system can simultaneously meet its three fundamental objectives (low

latency, scaling, and recoverability) together with a feature set that that is virtually

unrivaled.

Some of the current deployments include

 The ALICE LHC experiment uses xrootd to provide world-wide data access by

clustering storage over 60 autonomous sites in 20 countries.

 The US Atlas and CMS LHC experiments are using xrootd to create regional

clustered data repositories consisting of dozens of sites to make peta-bytes of

data available for on-demand copying as well as real-time data-access across the

WAN.

 The Fermi-GLAST astrophysics experiment is using xrootd as a key component

to perform timely data analysis and data reconstruction at SLAC and simulation

at IN2P3 of data down-linked from its gamma-ray satellite observatory.

 The Star experiment at Brookhaven National Laboratory is using xrootd to

augment data storage by clustering over 600 batch server nodes and making their

storage uniformly available to all batch jobs.

 CERN/IT is using xrootd as the basis for their massive EOS data delivery system

to serve analysis jobs across all experiments, initially starting with ATLAS and

CMS.

 The widely used Parallel Root Facility (PROOF), a Hadoop-like system for the

Root framework, uses xrootd as a fundamental part of its data access

infrastructure and leverages the xrootd framework for its job scheduling system.

 The Large Synoptic Sky Telescope (LSST) experiment is using xrootd to cluster

hundreds of mySQL servers to perform complex SQL queries on peta-bytes of

data. The prototype system has recently passed its data challenge tests.

3 The Feature Set

3.1 High Performance with Low Resource Requirements

High performance with resource efficiency is very strong point for xrootd. Special

attention has been paid to minimizing the use of memory as well as CPU. Typically, an

xrootd server providing read access to data will need less that 100MB of main memory

and usually less than 300MB when a write load is added. CPU utilization is linearly

proportional to usage and typically adds a few percentage points over the same native

operations.

Tests using machines1 considered under-powered today show impressively low latency

with minimal CPU overhead. Referring the Graph 1, you can see that added latency is

less than 10µs meaning that network or disk latency dominates (i.e. xrootd provides the

full performance of the underlying hardware).

Graph 2 shows the overall through-put as the number of simultaneous jobs increase.

The most significant feature that the performance graph shows is that xrootd scales
linearly with the number of clients (as indicated by the “CPU remaining” line). Linear
scalability means that the number of clients that a single xrootd server can support is
not limited by the server software but by factors such as memory, CPU, disk speed, and
network interface. Linear scaling also explains why network bandwidth utilization and
the number of events per seconds uniformly increase as more clients use the server.

1 Sunfire V20Z with AMD Opteron 244 CPU’s, each at 1.8GHz, 2 GB DDR SDRAM with a 333MHz clock rate,

2 MB L2 cache (1MB per processor), On-board gigabit Ethernet network interface, running Solaris 10.

Graph 1

3.1.1 Why low resource usage is important

As machines become more powerful while decreasing in price, it becomes easy to forget

that resources are still limited. Witness the explosion of memory hungry desktop

software as desktops increased in performance while the price dropped. Unfortunately,

that also meant that fewer programs could run at the same time. Perhaps not so

important for home computers but critical in batch worker environments where

multiple jobs are competing for the same resources. Here, better performance at a lower

price point is always taken as an opportunity to increase the useful workload.

In these environments the power of a small memory footprint along with low CPU

utilization for support services becomes critical. With xrootd’s small resource

requirements the trend is to use xrootd to leverage batch node disk resources to offer

better data sharing opportunities while leveling disk utilization across those nodes;

something that is difficult if not impossible with other clustered file systems.

3.2 Plug-In Architecture

The major pieces of xrootd pictured in Figure 1 are composed of discreet components. A

default set of components is packaged with xrootd that usually suites most

environments. However, xrootd is architected so that one or more of these components

can be replaced with custom implementations. The plug-in architecture makes xrootd

suitable for interfacing with a wide variety of data storage systems and is especially

useful for network access to storage systems that do not provide adequate or secure

network connectivity. Once the appropriate plug-in is created to handle a particular

storage solution, all of the xrootd mechanisms not replaced are enabled for that storage

solution.

For instance, assume you want to provide WAN access with x.509 security for the

Hadoop File System (HDFS). HDFS provides neither while xrootd provides both. It is a

relatively simple matter to write a storage system plug-in that interfaces with HDFS to

automatically provide secure WAN access to HDFS. In fact, such a plug-in already

exists.

The plug-in architecture allows you to customize the areas of security (authentication as

well as authorization), access protocols, clustering, name space handling, and file

residency using self-contained modules constructed as shared library plug-ins. This

makes xrootd applicable to a virtually limitless range of environments.

Figure 2: xrootd Components (aka plug-ins)

3.2.1 Why a plug-in architecture is important

The key feature of a plug-in architecture is that it allows you to leverage a substantial

software investment. This is akin to bringing a house up to new building codes. There is

no need to rebuild the house; you merely replace the outdated components. This has

been shown again and again to be a powerful strategy as shown by the many plug-ins

written for xrootd to accommodate evolving requirements over the years. Plug-ins

enable a speedy software evolution with minimal additional investment.

3.3 User-Mode Execution

The xrootd system requires that you run the various components as a non-root user.

This is done largely to make sure that should a compromise of any component occur,

damage is limited to privileges afforded to the user running xrootd. Typically, most

installations limit the user running xrootd to virtually no privileges to avoid any

significant security exposure. However, this does mean that all files served by xrootd

must be accessible by that user. Any files created by xrootd must be owned by the user

running xrootd. Even though files are typically owned by the xrootd user you can still

provide access control using the built-in (or custom) authorization mechanism to

arbitrarily establish virtual access control lists for files and paths.

User mode execution does not significantly impact xrootd performance because it uses

operating system interfaces that minimize movement of data to and from user-space.

3.3.1 Why is user-mode important

User-mode systems open the software to the masses. Anyone can setup an xrootd

cluster without the involvement of system administrators. This encourages speedy

deployment while providing the same level of security that is afforded to the user

deploying the system. A user-mode data access system encourages data sharing at very

little cost.

3.4 Multiple Authentication Mechanisms

Most data access systems provide a single authentication mechanism, restricting you to

particular security architectures. In xrootd, authentication is handled at the protocol

layer (i.e. it is fully integrated) using authentication plug-ins. A default set of plug-ins

are provided that handle Kerberos, password, shared secret, Unix, and x.509 (a.k.a Grid

Security Infrastructure) authentication. One or more of these may be enabled allowing a

client to negotiate which authentication mechanisms will be used for access. This allows

you to tailor security to whatever requirements are necessary. Since authentication is

done via plug-ins you can easily add additional authentication mechanisms, as needed.

3.4.1 Why multiple authentication is important

In today’s world many sites distinguish between inside and outside access. Users inside

the site (i.e. those who have been vetted) are allowed access to data using low-cost

authentication mechanisms, many times tied into the site’s single-sign on system (e,g,

Kerberos). Users outside of the site are typically required to provide additional

credentials before access is granted; a relatively heavy-weight operation (e.g. x509). A

multiple authentication mechanism allows a single data access system to distinguish

between the two cases and use the appropriate level of authentication. The inside users

can enjoy seamless data access while not endangering the system from outside users

who, when properly authenticated, can also access the site’s data.

3.5 LAN & WAN Federated Clustering

The xrootd system is architected for clustering data servers across a local area network

as well as the wide area network. A novel and powerful B-Tree mechanism is used to

cluster servers. This mechanism allows you to rapidly build extremely large clusters,

thousands of nodes, without any sacrifice in I/O performance. Performance is

maintained by establishing point-to-point (i.e. cross-bar) I/O connections at the time

data is requested.

The B-Tree mechanism employs advance algorithms that not only allow any node to be

replicated for added reliability but also to allow clusters to self-organize in real time.

Nodes can be added or removed at will without impacting the integrity of the cluster.

This means that clusters can be arbitrarily defined in real time as well.

An xrootd cluster can consist of not only a set of local nodes but clusters of clustered

nodes. The latter affords the capability to federate administratively distinct clusters

across the wide area network creating what appears to be a single storage system of

loosely coupled storage domains.

The same security used by data servers is employed by the clustering mechanisms to

provide full control on who can be a member of the cluster.

3.5.1 Why federated clustering is important

Unlike many of today’s clustered file systems, xrootd clusters all nodes in a federation

model. A federation model allows you to maintain local administrative control of each

component in the system. This means changes may occur at the lowest local level

without requiring any cluster co-ordination. Most importantly, hardware and software

changes can be rapidly done on a schedule conducive to the local domain and failures

remain isolated, providing far better reliability than can be achieved in non-federated

clusters.

Perhaps one of the most exciting features of federated clustering is that clustering can

become a social endeavor where clusters are rapidly created, augmented, and

disbanded in response to the particular needs of the moment. This is bottom-up

clustering where a group of researchers can get together and create a cluster on-the-fly

to share data with minimal effort.

3.6 Automatic Agnostic Data Movement

A special external data movement framework called the File Residency Manager (FRM)

is fully integrated with xrootd. The framework provides an agnostic way of copying

data into and out of any xrootd server. Copying can be triggered by defined events (e.g.

a request for a missing file) or by request (e.g. prepare file for access). The framework

does not limit the copy mechanism nor the source or destination of the data. This allows

using the framework to implement automatic file backup and restore, multi-tiered

storage, migration, and fault staging using a Mass Storage Systems, other data servers,

or even federated clusters. Indeed, practically all of these possibilities have already

been implemented at various sites.

The FRM also includes services that automatically remove stale data, perform live

relocation of files to different partitions, and allow assignment of residency attributes to

files such as on-line duration and in-memory access.

3.6.1 Why automatic agnostic data movement is important

Most clustered file systems allow automatic data movement but do so in constrained

frameworks (e.g. disk to disk, disk to tape, etc). Agnostic data movement removes such

constraints allowing a site to construct an arbitrary storage hierarchy that is specifically

suited to the problem at hand. Since the data source opportunities are unlimited; one

can truly achieve the notion of “any data, anywhere, at any time”; greatly expanding

data sharing options.

3.7 Decoupled Logical and Physical Name Spaces

The xrootd file name space is designed as a pseudo-hierarchical logical name space.

While it can be viewed as a hierarchy of directories, the design actually assumes it is

flat. This simplifies uniform mapping of the logical name space to its physical

implementation regardless of location and allows each node to implement the name

space as efficiently as possible. A trivial logical-to-physical name mapping function is

available while more complex mapping can be accomplished by using a name mapping

plug-in. The mapping provides the bridge between logical names and their physical

counterpart.

3.7.1 Why decoupled name spaces are important

Separating the logical from the physical names allows xrootd to present large clusters of

file servers under a single name space regardless of how any file server implements that

name space and independent of a file’s location in the cluster. This is an extremely

important property because it allows registry-free file movement (i.e. no external

database). Not only does this significantly improve performance but makes the system

far more reliable than registry-based systems since no permanent, possibly stale, state

information is needed to locate files and file movement does not rely on a registry being

accessible. This makes it possible to practically scale to extremely large server clusters

and efficiently aggregate billions of files.

3.8 Integrated Proxy Service

An xrootd proxy appears as a standard xrootd server but, in fact, fronts an xrootd

cluster. Data flows between an xrootd cluster and a client through the proxy server. A

proxy service is required when you wish to grant data access to external users when the

data servers reside behind a firewall (i.e. Firewall Scenario, below) or when the data

servers reside on a private network (i.e. Public and Private Network Scenario. above).

Since all data flows through the proxy, this can represent a bottle neck. However,

xrootd clustering technology also extends to proxy servers and these can be clustered in

the same way as data servers, as shown in the following diagram.

A proxy cluster can be scaled to whatever leve is needed to provide the required level

of performance. All of these scenarios are possible because an xrootd server can also act

like an xrootd client. Thus, an xrootd proxy service is deployed in the same manner as a

regular data server except that the data accessed by the proxy server resides elsewhere.

3.8.1 Why a proxy service is important

It has become common to deploy data services behind firewalls or on a private network

for security reasons. Without a proxy service it would be impossible to share the data to

users outside the site’s boundaries, eliminating the possibility of forming WAN clusters.

The xrootd proxy service provides a secure solution to this problem. Additionally, the

proxy server can also act as a virtual firewall. A site can limit what data is accessible

through the proxy server as well as who can access that data when the proxy is used.

This further enhances security options without impacting internal users.

3.9 Integrated Checksum Support

As part of xrootd configuration you can enable file-level checksum support. This

support allows you to compute, verify, and report checksums. Built-in support is

provided for the three most common algorithms: adler32, CRC32, and MD5. However,

any checksum algorithm can be implemented using an easy to write checksum plug-in.

Once computed, the checksum is recorded as part of the file and automatically

invalidated should the file’s contents change.

While many clustered file systems use checksums they typically do so at the block level

to provide internal consistency checks. In xrootd checksums are used specifically to

provide verification of a file’s contents. This is in addition to whatever checksum

consistency checks are used by the underlying file system (e.g. HDFS, ZFS, etc).

3.9.1 Why checksums are important

When providing access to a large pool of distributed data spread across numerous

autonomous sites it becomes crucial to verify that the data that comes from any site is in

fact the data you expected to get. Without a common checksum framework sharing data

at such a level level would be impractical.

3.10 Detailed Monitoring

Each xrootd server can be configured to report various statistics for monitoring

purposes. The most common set of metrics that is usually requested is what is called

summary statistics. Here the server reports aggregate values on various actions it has

taken, the amount of data read, written, and transferred; among many other values. The

data is selectable and can be sent to arbitrary monitoring collectors for rendering.

In addition to summary data, an xrootd server can also be configured to collect and

report detailed information. The amount of detail is also configurable. At the low level

xrootd tracks general actions taken by each client; at the highest level xrootd produces a

complete history of every action taken by a client. To minimize the performance impact

on the server at the highest monitoring levels, a densely encoded parallel protocol is

used to shift the monitoring burden from the server to the data collector; where it

arguably should reside. At the full level of monitoring, server performance is decreased

by less than 5%; making detailed monitoring practical. The more commonly used

summary monitoring has no performance impact.

3.10.1 Why detailed monitoring is important

Detail monitoring provides a unique look into the data access patterns employed by an

analysis technique. Without such insight it becomes impossible to tune either the

analysis or server data placement to optimize performance. Even finer grained data

access pattern analysis is possible using xrootd by incrementing the application to insert

transition markers into the monitoring stream when detailed monitoring is enabled.

This allows discovering exactly which parts of a program require tuning. Optimization

of a program’s data access is quickly becoming the last frontier in tuning a system to

efficiently utilize all available resources.

3.11 Multi-Source Transfers

When transferring a file from one location to another, you can request that all available

copies of the file be used in parallel. This is essentially a bit-torrent like transfer. Unlike

bit-torrent, partial file segments are neither created nor used. This makes multi-source

transfers consistent with single source transfers. The validity of the copy can be

transitively verified by simply matching the checksums of all the sources against the

final product; an integral part of xrootd.

3.11.1 Why multi-source transfers are important

Much research has gone into how to pick the best location from which to fetch a file,

even leading to the establishment of network weather services to be used as guides to

making such a choice. Using such services is rather complex and, like weather,

produces variable results. In the xrootd world, one can dispense with the concept of

“best” by simply asking that everyone participate to the extent possible. The best will

automatically participate most while the worst will add at least something. The

approach is uncomplicated and always yields the best result possible even under

varying conditions. In fact, multi-source copies easily decrease transfer time by an order

of magnitude compared to single source transfers; further increasing productive time.

Of course, this all relies on having multiple copies. Given that the major point of xrootd

is to easily establish real-time world-wide clusters, the probability of finding multiple

copies dramatically increases; making multi-source copying practical.

4 Future Opportunities

While xrootd is a mature system, there are several areas that can benefit from additional

research and development. These are, in alphabetic order:

 Authentication protocol transposition

 Automatic rebalancing

 Client-Side algorithms

 Federated site selection

 Monitoring

 Wide area access

The following sections discuss the issues and possible solutions.

4.1 Authentication Protocol Transposition

As described before, xrootd provides a complete spectrum of authentication

mechanisms. Indeed, xrootd is a multi-protocol system. Each site chooses the

appropriate authentication algorithms and, in general, the user is unaware of which

algorithm is used when accessing a site.

The current choice for wide area access is x.509 based on the Grid Security

Infrastructure (GSI) mechanism. While x.509 is a robust authentication protocol, it is

also very CPU intensive. As more and more clients connect to a server, a significant

amount of the server’s time is devoted to authentication rather than data delivery.

A solution to this issue is to allow the server to substitute a lighter-weight protocol after

doing the initial x.509 authentication for a client (i.e. protocol transposition). Then, the

client would use the transposed protocol when connecting to any data server within the

substituted protocol’s domain (e.g. data servers within the local cluster). The existing

xrootd protocol allows for transposing one authentication protocol for another;

however, this feature has never been exploited because several research questions

remain:

 The choice of a light-weight protocol,

 should multi-protocol support extend to protocol transposition,

 how protocol expiration times should be handled,

 what information needs to be maintained during the transposition, and

 the specification of security risks that may be introduced.

These are significant research questions and the proper implementation of the choices is

no less significant in terms of development effort. However, the pay-off is rather large

in the expectation that external access to data will become a large percentage of all data

access requests.

4.2 Automatic Rebalancing

Currently, when a site adds additional disk to a server, the site administrator must

manually rebalance files to maintain an equal amount of space utilization among all the

disk resources. Inductively, this also means that the same manual intervention is

required when adding a new disk server. To date, there was no overwhelming reason to

automate the process since rebalancing usually required that files be moved in context.

That is, random file movement for purposes of space equalization would usually

produce hot-spots as groups of concurrently used files would wind up on the same disk

subsystem or same server. Hence, only an administrator would know the appropriate

set of file candidates that should be moved to avoid hot-spots.

In order to address this problem, several research questions need to be addressed:

 How to efficiently tag mutually exclusive files,

 should rebalancing be an ongoing activity or a triggered event,

 to what level should data access patterns enter into rebalancing decisions,

 algorithms that need to be employed to prevent data loss, and

 the role of the administrator in the rebalancing effort.

Automatic rebalancing is potentially a clear win in terms of space administration, if it

can be properly done. Otherwise, the current manual scheme is a safer proposition.

4.3 Client-Side Algorithms

While the xrootd client performs well, more and more users are pointing out that it

could perform far better, especially as the number of cores per worker node increases;

necessitating running ever more jobs on a single node. The particular areas that need to

be addressed are:

 Reduced CPU utilization (conservatively by 50%),

 a plug-in architecture for client-side pre-reading and caching of data blocks,

 using multiple data sources for random access, and

 a fully asynchronous threading model for enhanced parallelism.

No doubt, addressing these issues will likely require re-architecting the client code.

However, the end result will be a client that can be automatically customized on-the-fly

to perform as efficiently as possible for any particular job; allowing for the full

utilization of large multi-core worker machines.

4.4 Federated Site Selection

For all practical purposes, xrootd employs the same server selection algorithm when

selecting a server in a local cluster as it does when selecting a server in a globally

federated cluster. This is not to say that the algorithms are identical. Indeed, xrootd is

aware of the local and global differences. However, such awareness has not been fully

exploited because server research questions remain:

 How to automatically determine round trip time between a client and the

ultimate data source,

 metrics that apply to global selection that differ from local selection,

 the degree that server avoidance should play in site selection, and

 an appropriate plug-in model for server selection that has negligible latency.

While the current system does incredibly well in managing a local cluster, that same

level of performance should be expected on the global level. Currently, that is not the

case. Addressing these issues will go far in understanding how federated clusters

should be managed to achieve high performance and make federated access a main-

stream technology.

4.5 Monitoring

The xrootd system can uniquely provide massive amounts of information about its

processing choices as well as performance metrics. Indeed, efforts to mine the available

information as well as choices on how to render that information is a meaningful way

have just started. Currently, only basic monitoring information is available to

administrators via widely used monitoring agents (e.g. Ganglia, Mona Lisa, etc). This is

in large part because no one really knows what information is truly meaningful, how

the various pieces inter-play to produce a full image of a functioning system, and what

information should reliably produce alerts to indicate possible problems.

The effort required to fully exploit available monitoring information is substantial

simply because such exploitation is a nascent technology. Addressing, this issue will not

only help in administering xrootd sites, federated or not, but also add to the

understanding what monitoring information is needed in other similarly large-scale

data access systems.

4.6 Wide Area Access

While xrootd was engineered for wide area access, and does so better than one would

expect, there is still substantial room for improvement in terms of random access. The

need for additional improvement is largely driven by the fact that wide area access is

quickly becoming the more and more important as sites federate and site administrators

do not want to locally replicate files that are generally accessed only a few times across

the wide area network.

A promising solution is to interpose a local proxy cluster between clients at a site and

the wide area network. The proxy cluster is then used to optimize random access across

the WAN. This technology is already provided by xrootd but has not been exploited as

several important questions remain to be addressed:

 How security should be handled through a proxy cluster,

 what algorithms should a proxy cluster employ to minimize latency,

 to what degree should data be semi-permanently be cached, and

 what are the scaling characteristics of such a setup.

A successful resolution of random WAN access using a proxy scheme would not only

benefit current users but would immensely add to the understanding of how to

efficiently provide random access across the wide area network to the field of computer

science; ultimately making federated access the preferred solution.

5 Conclusion

Xrootd is as relevant today as it was a decade ago. It’s dynamic with active

development with collaborators at SLAC, CERN, BNL, UCSD, and the University of

Nebraska. Timely support is provided by SLAC, CERN, Duke University, and the Open

Science Grid (OSG). It is being adopted at an ever increasing rate by laboratories and

universities across the world. It is no wonder why xrootd has become one of the

cornerstones in data analysis for Astronomical and high energy physics in local clusters

and world-wide grids.

