
Suggestions for Continuing Software Development at LCLS/CXI

T. J. Lane ∗

Primary Contact
Derek Mendez, Richard Kirian, Daniel Ratner, Jonas Sellberg

Contributions and Discussions

February 4, 2013

Based on our recent experience at LCLS beam time L648, the Doniach team would like to provide
some constructive feedback for how the LCLS, and the CXI hutch in particular, could improve
the user experience through additional software development. This report has been constructed
based on feedback from multiple groups that have run at CXI, including the Doniach, Nilsson, and
Chapman groups.

In preparation for our beam time, it came to our attention that there exist multiple concurrent
software projects that aim to solve essentially the same problem: pre-processing of the pixel-intensity
data written out from CXI’s CSPAD detector. These software packages include: Cheetah, of which
there are at least three versions in development, the official psana and pyana software provided
by SLAC, and extensions to this software such as Kitty/Giraffe. Each of these codes aims to
extract raw CSPAD data from run XTC files, assemble the CSPAD measured intensities onto a
real-space detector geometry, and apply a series of corrections (for gain, pedestal, etc.). These
needs are common to nearly all experiments performed at CXI.

While there exist multiple codes to perform data pre-processing at CXI, we found no one of them
satisfied our experimental needs. Software developed by user groups was overly specific, difficult to
use, and contained bugs. At the same time, the software provided by SLAC (psana and pyana)
did not contain all of the functionality we required, and we found it difficult to precisely understand
the execution of this software given current documentation. Thus, we believe that both the user
groups and SLAC personnel could greatly benefit from collaborating on a single, well-written and
well-documented software package.

This report focuses primarily on the CXI hutch at LCLS, and the in-house software supported by
CXI, psana and pyana. It is our hope that these software suites can be developed to the point
where they provide a general platform for data pre-processing of all experiments performed at CXI.
This would provide a significant boon in scientific productivity for users, facilitate on-line data
analysis, and decrease the workload on SLAC’s software engineers. In what follows, we provide a
set of suggestions that SLAC can implement immediately to help realize this goal. Considering the
considerable investment SLAC has made in LCLS infrastructure and staff, software should not be
a limiting factor in the scientific productivity of the LCLS.

∗Stanford University, Department of Chemistry: tjlane@stanford.edu

1



Guiding Principles for Continuing Software Development at LCLS
There are a number of principles that we believe should guide further software development for use
at the LCLS:

• Documentation. Any software in use at the LCLS will be used by groups with mixed back-
grounds and familiarity with LCLS/CXI particulars. Therefore LCLS software (psana/pyana)
should be clearly documented in a browsable format. Currently, documentation is hosted on
SLAC’s confluence page; for users, the logical layout of this documentation is not clear from a
user’s perspective. For example, there are at least four pages that contain information about
accessing the CSPAD geometry:

https://confluence.slac.stanford.edu/display/PCDS/CSPad+alignment
https://confluence.slac.stanford.edu/display/PCDS/2011-06-20+CSPad+alignment+parameters
https://confluence.slac.stanford.edu/display/PCDS/CSPad+metrology+and+calibration+
files%2C+links
https://confluence.slac.stanford.edu/display/PCDS/Tutorial+-+python%2C+pyana+and+
matplotlib

each of which contain different and incomplete documentation about a critical piece of infor-
mation: the detector geometry.

• Transparency. Concerns have been raised by LCLS user groups about employing software
who’s precise execution is unclear. No scientist wants to trust their results to a “black box”.
Therefore, any software provided by SLAC should be transparent. Documentation about how
to use any algorithm should be accompanied by documentation about how those algorithms
work. The user of software should not be forced to read source code to know what a piece of
software is doing.

• Extensibility. Any code provided for analysis of LCLS data should be easily extensible by
user groups. psana already provides a limited platform for extensibility, but this principle
could be greatly advanced by moving to a modern scientific software model (see Moving to
a Modern Scientific Software Model below).

• Portability. Currently, LCLS codes such as psana and pyana only run on SLAC machines.
These codes should be portable to non-SLAC machines. For example, the XFEL group at
DESY, in Germany, has developed and maintained their own software in part due to this lack
of portability.

Moving to a Modern Scientific Software Model
SLAC resources are limited. It would be unreasonable for user groups to expect all software chal-
lenges they face to be dealt with by SLAC or any of its daughter institutions (LCLS, CXI). Therefore
we would like to suggest that the central analysis software projects in use at CXI, psana and pyana,
move to a modern collaborative software model. We believe this model could yield large productivity
increases for not only SLAC software staff, but also LCLS user groups who instead of simultaneously
developing equivalent codes, can contribute to one central project.

In this model software is hosted in a highly visible location where users can easily browse the code.
This hosting platform should support revision control, bug reports, issue tracking, and functionality

2

https://confluence.slac.stanford.edu/display/PCDS/CSPad+alignment
https://confluence.slac.stanford.edu/display/PCDS/2011-06-20+CSPad+alignment+parameters
https://confluence.slac.stanford.edu/display/PCDS/CSPad+metrology+and+calibration+files%2C+links
https://confluence.slac.stanford.edu/display/PCDS/CSPad+metrology+and+calibration+files%2C+links
https://confluence.slac.stanford.edu/display/PCDS/Tutorial+-+python%2C+pyana+and+matplotlib
https://confluence.slac.stanford.edu/display/PCDS/Tutorial+-+python%2C+pyana+and+matplotlib


for easily incorporating code contributions from third parties. A set of core developers (SLAC
employees) act not only to develop new software functionality, but also as gatekeepers and overseers
of the software project. This allows third parties (LCLS user groups) to easily contribute code,
which can then be verified for correctness by SLAC software engineers.

This model results in large productivity gains for both groups. User groups can contribute to and
employ a central code, and they can be assured that this code is well-documented and runs in a bug-
free manner due to the oversight provided by SLAC. Meanwhile, SLAC’s software engineering team
can focus on higher-level software development issues (e.g. engineering extensibility and portability)
and leave the details of algorithmic development to users. For this collaborative model to succeed,
however, it is necessary to provide tools (beyond basic revision control) that allow users and SLAC
employees to communicate and collaborate effectively.

Fortunately, tools for facilitating this communication exist and can be readily implemented. Our
team has experience with GitHub, a powerful software development platform that supports revi-
sion control, code branching, issue and bug tracking, and hosts a discussion platform. GitHub
provides an “enterprise” software suite (https://enterprise.github.com) that would allow for
secure software development contained completely on-site at SLAC. GitHub is just one example of
a way to implement a platform to support collaborative code development; we would be open to
alternatives.

Functionality Currently Missing in psana
While psana provides a great deal of functionality, it lacks certain general features we believe
would be helpful to all groups running at the CXI hutch. This gap in functionality has spawned
the development of large software projects by user groups, who often reproduce each other’s work.
Adding this functionality to psana should greatly improve the scientific output of LCLS user groups.
We have enumerated a few essential features that we believe psana lacks that should be immediately
implemented, roughly in order of importance:

• Access to the detector geometry: A clear explanation of the provided geometry specifica-
tion, with good diagrams, would be extremely valuable to the users. Reports from numerous
people suggest that the current specification is difficult to understand. It would be favorable
to have a single definitive explanation, clearly documented. We suggest a vectorized geometry
specification would be easier to understand for most people than what currently exists; such
a representation is used in e.g. Felipe Maia’s Hawk, Tom White’s CrystFEL, and CXIDB
(http://cxidb.org/).

• Detector centering: The geometries provided at CXI do not contain definitive coordinates
on the location of the x-ray beam relative to the CSPAD.

• Automated quad shifting: Further, the relative positions of each CSPAD quad are often
incorrect. An automated way to correct this lacking geometrical information would be of great
use.

• Parallel execution: While psana, implemented in C++, is quite fast, it runs only on a
single core. Because most data processing tasks at CXI are embarrassingly parallel, it should
be straightforward to implement a parallel version of psana. Parallel execution is currently
provided by some user-developed software packages such as Cheetah.

3

https://enterprise.github.com
http://cxidb.org/


• Non-linear gain correction: While a gain-correction module exists in psana, the user is
required to provide their own calibration file. A standard gain calibration for the CSPAD and
a gain correction algorithm would be of great help to users.

• Polarization correction: An automated method to correct for beam polarization would be
of use.

• Solid angle correction: Solid-angle corrections are provided in Cheetah and would help
complete psana’s functionality.

• Photon counting: For certain experiments, counting individual photons is necessary. A
standard algorithm to convert the CSPAD’s ambiguous ADUs to a photon count would be of
great benefit during these experiments.

Conclusions
The Doniach team’s experience at the LCLS/CXI was overwhelmingly positive. The support we
received from the staff at CXI could only be described as excellent. Our primary beam time challenge
was choosing, using, and modifying software to pre-process our data. This undoubtedly reduced
our scientific productivity while at CXI, and continues to pose a challenge to us weeks after our
beam time has ended.

We believe that psana, if hosted on a transparent platform that encouraged user contributions,
could provide a general software package for data pre-processing at CXI. We have laid out our
vision for how to make this vision a reality. Further, we have provided a concrete list of additional
functionality that, if implemented, would make psana the clear choice amongst currently available
software.

We hope that continued feedback between users and LCLS staff can continue to increase the pro-
ductivity of the unique resource the LCLS provides. We encourage any interested or involved party
to contact us about the suggestions laid out here.

4


