

HPS - online ECal Oct 17th/11 F.-X. Girod

Existing tools
Inner calorimeter
Performances of the IC
Future tools

Online Monitoring and Calibration - ECal

Oct 17th 11

F.-X. Girod

Overview

HPS - online ECal Oct 17th/11 F.-X. Girod

Existing tools
Inner calorimeter
Performances of the IC

Future tools

1 Existing tools
Inner calorimeter
Performances of the IC

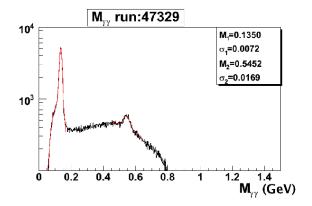
2 Future tools

2

The inner calorimeter

- 424 lead tungstate crystals, 1.3 × 1.6 × 16 cm³ read out with APDs
- ullet quasi-pyramidal with appex \sim 75 cm from the front face
- used down to 5° at luminosities in excess of $10^{35} \text{ s}^{-1} \text{cm}^{-2}$
- on ¹H, ²D, ⁴He, ¹⁴C targets
- stabilized in temperature to 0.1 K
- equipped with a pulsed green laser monitoring system
- occupancies up to MHz above 50 MeV threshold

HPS - online ECal Oct 17th/11 F.-X. Girod


Existing tools

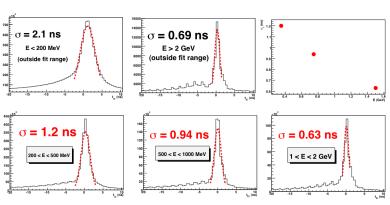
Inner calorimeter

Performances of the IC

Performances of the IC Energy calibration

- Use two-cluster events to adjust the neutral pion mass peak
- Requires either a thin target or the knowledge of the vertex by coincidence
- energy resolution : $\frac{\sigma_E}{E} = \frac{0.02}{E} \oplus \frac{0.033}{\sqrt{E}} \oplus 0.025$
- position resolution : $\sigma_{\rm X} = \frac{0.18}{\sqrt{E/1~{\rm GeV}}}$ (cm)

HPS - online ECal Oct 17th/11 F.-X. Girod



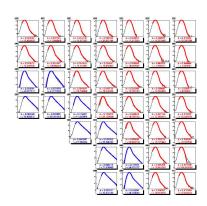
Existing tools
Inner calorimeter
Performances of the IC

Performances of the IC

Time calibration

- The timing is performed w.r.t. the vertex time of the triggering particle
- Correction for timewalk gives resolution better than 1 ns

HPS - online ECal Oct 17th/11

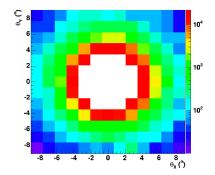

F.-X. Girod

Existing tools
Inner calorimeter
Performances of the IC

Performances of the IC Radiation hardness and stability

- Fit the spectrum of random background = gaussian pedestal ⊗ exponential background
- More than 50% probability of pile-up within 180 ns, with $E_{\rm dep} \approx 75~{\rm MeV}$
- 10 Mrad/months resulted in little to no transparency loss

HPS - online ECal Oct 17th/11

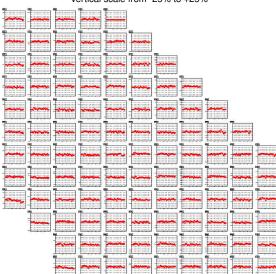

F.-X. Girod

Existing tools
Inner calorimeter

Performances of the IC

Performances of the IC Radiation hardness and stability

HPS - online ECal Oct 17th/11


F.-X. Girod

Existing tools
Inner calorimeter
Performances of the IC

Performances of the IC Radiation hardness and stability

Vertical scale from -25% to +25%

HPS - online ECal Oct 17th/11

F.-X. Girod

Existing tools
Inner calorimeter
Performances of the IC

Future tools

Online monitoring and control, offline

- times and amplitudes for separated pulses from new FADC board of includes question on data transport and format good news: general service work for CLAS12
- If we have laser injection: trigger configuration, control of light injection √
- ullet EPICS record of temperature, control of HVs and alarm for temperature \checkmark
- Pedestal (baseline) runs Ø
- Calibration scheme and runs √
- Online occupancies √
- Online reconstruction (includes a tracker) Ø
- ullet Dedicated runs for calibration and HV adjustements \checkmark
- Trigger studies Ø
- Minimum bias trigger for efficiency systematics Ø?
- Offline calibration (includes a tracker) Ø?

HPS - online ECal Oct 17th/11

F.-X. Girod

Existing tools
Inner calorimeter
Performances of the IC