
HPS Si Tracker Software:
Monitoring, Control,
Calibration and Conditions

Tim Nelson -

HPS Software Workshop - JLab

10/17/2011

1

Required Monitoring and Control
Power: voltages and currents controlled/monitored though CAEN SY527 (RS232)

Voltage and current for both HV, LV for 20 Sensors: 80 values

Should be easy to integrate with EPICS based monitoring (also used at CDF)

Cooling:

Hybrids have up to four temperature inputs.

Anticipate four per module (2 hybrids + 2 blocks): 40 values

Temperature data can be extracted from SVT datastream (can define with Ryan)

Also, Tchiller, Tinput / Toutput of cooling manifolds: 3 values

Dewpoint monitoring?

Control/Monitoring of SVT positions: 4 values (hardware not defined yet)

Beam conditions: interlock SVT power on beamline monitoring (is there really software?)

Monitoring plots: EVIO, EVIO to LCIO + simple driver

2

Not clear what hardware
looks like}

Required Calibrations and Conditions

Will be regular runs that use internal calibration generator on APV25

Pedestal, gain, noise, t0 for each channel: 4 * 12800 channels

These will define “calibration periods” that need different constants

APV25 / DAQ configuration: all APV25 / DAQ settings for each run

We expect internal alignment to be stable, however:

We have so many tracks that it should be possible to determine full alignments of any
single run with small errors

20 * 6 constants required: 120 alignment constants. Bow constants? (at most 2)

Online monitoring plots will need to use some assumption about tracker position.
Will need conditions system designed to serve special “online calibration” data

Trigger time offset: global timing offset between ECal trigger and SVT for each run

3

How does all this happen?
Power/Current monitoring should be relatively easy.

Someone on DAQ side will need to format SVT temperature data for input to
EPICS. Other temperature data probably comes from JLab hardware.

SVT calibration data is the big consumer

Need to define calibration procedure flag calibration runs with a “run type” and
generate code to analyze the calibrations and produce constants that can be stored in
the conditions/calibration database.

Same for alignment, but work on this is well underway thanks to Matt.

What kind or run/analysis is required to determine trigger time offset?

Bottom line: this all looks manageable, but there are things to think about, work to do!!

4

