

Sharing Code: Distributed Version
Control and Social Development
(http://www.slac.stanford.edu/~jrbl/SCW11.pdf)

What's my point?

This is about collaboration, and having choices.

What centralized source control manages with
process, decentralized source control systems

let you manage with software.

http://www.slac.stanford.edu/~jrbl/SCW11.pdf

My Experience

● Software development with small and medium-sized
groups using centralized (CVS, SVN, Perforce) and
decentralized (git) tools. Startups, universities, ISPs,
nonprofits.

● I work on INSPIRE (http://inspirebeta.net) as part of an
international collaboration (CERN, DESY, Fermilab,
SLAC). At any given time I'm actively coordinating with
1-3 other people and our repos receive commits from ~
12 in 3 widely separated timezones.

● Seven years as a sysadmin trained me well in human
failings.

http://inspirebeta.net/

I Love git

● But you're welcome to use something else.
● Popular DVCS systems include:

– bazaar (bzr), git, mercurial (hg)
– Nowadays they're roughly equivalent in functionality with

zealous supporters of each claiming their way is best.
● For the record, I use vi, too.

Tools Matter

Don't believe me?

Ice.

Sucks, right?

Ice.

So awesome.

Because you had a
better tool.

Collaboration Tools for Fun and
Profit

● You know that way that checking your FB activity stream
gives you this little hit of dopamine, so soon you find yourself
continuously refreshing to see what people you haven't talked
to since high school had for lunch?
● Github is like that ...except that when it's code, it's actually useful...
● Make code review feel like playing a game.

● Lots of projects and companies are working on this idea, but I
believe the current gold standard is github.
● See me after if you want a tour.

A Really Good Basket

A Quick Introduction to git

● Fully distributed
● Lockless
● Formally not that different from the darcs stack-of-

patches model, but informally it's much easier to use and
to reason about.
● Being easy to reason about is a huge win.

● Developers work with changesets, which are sort of like
patches but much smarter and generally self-applied.

● Key ideas are: developer convenience is vital, and you
should make branches for everything.

Better Metadata (the small stuff)

● Pulling a branch in SVN for a one-line fix is
ludicrous.
● So one-line fixes tend to accumulate on the mailing

list.

● Pulling a branch in git for a one-line fix is
normal.
● So every one-line fix gets its own commit history.

● Which situation would you rather have?

And Remember Kids:

● Commit Early, Commit Often

Addenda

● http://hginit.com
● http://book.git-scm.com/ (Read Chapters 2-4!)
● http://whygitisbetterthanx.com/
● http://github.com

http://hginit.com/
http://book.git-scm.com/
http://whygitisbetterthanx.com/
http://github.com/

Thanks

● Travis Brooks, Valkyrie Savage and Evan
Stratford for valuable comments

● Matt Bellis for Hg materials
● Anami Sheppard for putting up with me
● Cc-by-SA Image credits:

● Egg Drop: Kev Meagher
● Bigraph: Rob Zako
● Egg Cups: Normann Copenhagen
● Ice Skate: johnny_automatic & Open Clip Art Library

Bonus Material

● Slides that didn't make the cut

Another Point

ALWAYS Use Version Control
● I shouldn't have to say this.

● But sad experience tells me someone's going to
argue that they know better.

● Trust me. You don't.

● Nothing – not even your .bashrc – is unworthy
of source control.
● See me after for my rant about source control for

sysadmins.

Distributed vs. Centralized Version
Control

● CVCS uses a single master repository into
which everyone puts their stuff.
● Interactions mediate via trunk

● DVCS makes every developer their own master
– but with great power comes great
responsibility.
● Direct interaction between devs.

CVCS: Organizing Work

● Traditional centralized source control tools
suggest hierarchy. Developers work with one
blob of stuff, so they organize themselves into
trees.

Hierarchical Teams Make Sense
with SVN

● They have to, because branching is expensive
so committing to core is very serious.

● One wrong step and you could “break the
build”.
● (A motto for SVN: If you put all your eggs in one

basket, it had better be a really good basket.)

DVCS: Organizing Work
● In DVCS, we make branching and merging

cheap. Developers work with trees and teams
can (self-) organize into any graph they want.
● Tight collaboration works well in a partially cyclic

bigraph.

Peer Review With SVN

● I pull from master and make my edits. When I'm
done I send patches to my collaborators who
read them and argue with me.

● If they want to work with my changes, they pull
another copy of master and apply my patches,
and then generate patches of their own to send
me.

Peer Review With git

● I branch off master and make my changes. I
push my branch to a public location and email
my collaborators to tell them where.

● My collaborators use my URI to make diffs on-
the-fly against any branch they like or a
consensual reality (“master”), check out my
branch, or make commits back to it.

● They still argue with me sometimes of course,
but as often they just implement their
suggestions in my branch.

Peer Review With SVN

● I pull from master and make my edits. When I'm
done I send patches to my collaborators who
read them and argue with me.

● If they want to work with my changes, they pull
another copy of master and apply my patches,
and then generate patches of their own to send
me.

Peer Review With git

● I branch off master and make my changes. I
push my branch to a public location and email
my collaborators to tell them where.

● My collaborators use my URI to make diffs on-
the-fly against any branch they like or a
consensual reality (“master”), check out my
branch, or make commits back to it.

● They still argue with me sometimes of course,
but as often they just implement their
suggestions in my branch.

Wild Experimentation is A-OK

● With cheap branching the cost in terms of
complexity management for wild
experimentation is kept low.

● So is the cost of version controlling and
publishing prototypes.
● This means it's easier to both share your prototypes

or to keep them to yourself – your choice.

Your Process Can Grow as You Do

● Centralized source control encourages careful
thought ahead of time about who can commit,
to what and when. Once established, the
development process (idea to deployment)
work hardens.

● With project initialization as simple as 'git init',
DVCS systems encourage jumping right in, and
deciding on process later. It's technically easy
to alter process at any time. (You're on your
own politically though.)

Safer? Yes:

● DVCS makes every working tree a complete
backup.

● Reproduction of automation infrastructure (e.g.,
Jenkins) to developer nodes is easy.
● Hint: this means you get better code, not just more

of it.

Faster? You betcha.

● When branching is cheap you make more
branches.

● More branches means you can try more
harebrained ideas.

● Trying more harebrained ideas means more
wild successes.

Fast Iteration

● Tight, iterative development is easy with git: you
think in terms of changes, not files.

● Working in parallel (even on the same files) and
merging changes at the end of the day is
normal.
● Compare this to the dread of discovering your

coworker made an SVN commit of conflicting
changes ten minutes before you.

Infrastructure Support

● Consider Sourceforge or even Trac (VCS, wiki,
forum and web integration). Tools integrating
with centralized source control tend to be
mature, and project-focused.

● Distributed development tools tend to focus on
the developer's experience, not the project
manager's. Examples include Canonical's
launchpad, Google Code and github. (And
plugins for Trac, too.)

Long-lived Branches (SVN)

● I have a branch out for six months and make
10,000 changes across 1,000 files.

● To merge my branch, I have to diff and patch
each file carefully as not to clobber other
peoples' work.

● And to keep them from cobbering my
integration, they shouldn't check anything in
while I'm integrating.

● There goes my weekend.

Long-lived Branches (git)

● I have the same 10,000 changes across 1,000 files.
● Let's say I haven't been merging in from everyone

else on a regular basis (though normally I would and
it would be easy.)

● To merge my branch, I have to examine each and
only the individual changes that conflict with changes
made in the intervening time.

● What I merge into is just another branch, and so is
what you merge into. All streams merge into one,
and we can take our time getting there.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

