lcsim A Java-based Reconstruction package for Particle Physics

Tony Johnson
on behalf of
Norman Graf
SLAC Scientific Computing Workshop
June 2011

What is lcsim?

- Reconstruction and Analysis suite
 - Developed for linear collider physics studies
 - 10+ years, 100+ developers
 - Supports
 - General detector development/prototyping
 - Small experiments
- Companion program to SLIC
 - See Jeremy's talk yesterday in simulation session
 - Like SLIC reads detector description from XML
 - SLIC and lcsim share same XML description
 - Like SLIC uses standard IO formats
 - StdHEP, Icio, AIDA, ...

Key Features of lcsim

- Facilitate contribution from physicists in different locations with various amounts of time available.
 - Beginning students or postdocs often do detector development
 - Very easy for individual users to install
 - Doesn't require local expertise
 - Extensive tutorials make getting started easy
 - "Zero to physics in 15 minutes"
- Modular suite of reconstruction and analysis tools
 - Extensive set of generic reconstruction algorithms
 - With examples of use
 - Allows new algorithms to be plugged into framework
 - Encourages development of experimental reconstruction and analysis algorithms

Lcsim Implementation

- lcsim is implemented in Java
 - Mainstream language familiar to most students
 - Easy to learn, foot shooting resistant
 - Garbage collection greatly simplifies OO design
 - Excellent open-source tools available
 - IDE's, refactoring, debugging, project management, build systems
 - Many high-quality, open-source science libraries available
 - High performance
 - Most important metric is
 - Ease with which physicist having an idea can implement and test its effect!
 - Compile once and run on Mac, Windows, Linux
- Can be run either
 - Standalone with XML steering file (batch, Grid friendly)
 - Interactively inside Java Analysis Studio (JAS)
 - Renaming all classes to begin with T not required

WIRED event display

Reconstruction/Analysis Overview

- Fast MC → Smeared tracks and calorimetry clusters
- Full Event Reconstruction
 - Beam background overlays at detector hit level, including time offsets.
 - detector readout digitization (CCD pixels, Si μ-strips, TPC pad hits)
 - ab initio track finding and fitting for ~arbitrary geometries
 - multiple calorimeter clustering algorithms
 - Individual Particle reconstruction (cluster-track association)
- Analysis Tools (including WIRED event display)
- Physics Tools (Jet Finding, Vertex Finding, Flavor Tagging)

Tracking

- Analytic covariance matrices available for fast MC smearing for each detector.
- Track "cheater" available for studies of full detector simulation events. Assigns hits on basis of MC parentage.
- Ab initio track finding packages.
- Fitting code incorporating multiple scattering and energy loss via weight matrix or Kalman Filter available.

Track Reconstruction

- Hits in Trackers record full MC information.
- Module tiling and signal digitization is deferred to analysis stage.
 - Used to rapidly study many possible solutions.
- Fully-featured package to convert MC hits in silicon to pixel hits. Fully configurable at runtime.
 - MC Hits \rightarrow Pixel ID & ADC \rightarrow Clusters \rightarrow Hits (x $\pm \delta$ x)
- Correctly study occupancies, overlaps, ghost hits, etc.
- Standalone pattern recognition code for 1D (e.g. Si ustrip) and 2D (e.g. Si pixel) hits.
 - High efficiency, even in presence of backgrounds.
 - Efficient at low momentum.
- Track finding strategies automated.

Individual Particle Reconstruction

- Many clustering algorithms available for calorimeter shower reconstruction.
- Track-cluster association (aka Particle Flow Algorithm, PFA) implemented.
- Algorithms available for electron and muon ID
- Secondary vertex capabilities identify jet flavor
- Multiple jet-finding algorithms available.
- Plug-and-play reconstruction driven by runtime XML

Java Analysis Studio (JAS)

- Cross-platform physics analysis environment with iterative, event-based analysis model
 - quick development, debugging, ad hoc analysis
 - additional functionality with plugins
- Dynamically load / unload Java analysis drivers
 - Supports distributed computing.
- Plotting and fitting and analysis (cuts, scripting) engine
 - 1D, 2D histograms, clouds, profiles, dynamic scaling, cuts
 - high-quality output to vector or raster formats
- Integrated event browser and event display (WIRED)

Validated

- This suite of software tools provides:
 - Physics event generation & bindings to most legacy generators through the stdhep format.
 - Full detector response simulation using precompiled binaries & runtime geometry definition (no coding!).
 - Full detector digitization (x-talk, noise, diffusion, etc.)
 - Hit-level overlay of arbitrary background events.
 - Access to other LCIO-compliant software frameworks.
 - Full ab-initio event reconstruction and analysis suites.
 - Tested on hundreds of millions of events.

Simulation Summary

- ALCPG sim/reco supports an ambitious international detector simulation effort. Goal is flexibility and interoperability.
- Provides a complete and flexible detector simulation package capable of simulating arbitrarily complex detectors with runtime detector description.
- Reconstruction & analysis framework was used to characterize the Silicon Detector and was essential to that concept's successful validation in the LOI process.
- LCIO provides interoperability with tools developed in other regions (e.g. jet flavor tagging (LCFI), particle flow (Pandora)), other languages (FORTRAN, java, C++, python) and other analysis frameworks (e.g. Marlin, root).

Lesim Status

Performance

- 1 years ILC data (~50 million events) simulated for ILC LOI
 - Slightly idealized geometries
 - SLIC/Geant4 (simulation, C++)
 - ~48 seconds/event, Peak memory ~480MB, Event Size: 165kB/event
 - org.lcsim (reconstruction, Java)
 - ~8 seconds/event, Peak memory ~450MB, Event Size: 220kB/event

User base

- ILC physics and detector community
 - primarily US and UK members of SiD
- CLIC physics and detector community
 - CERN-based SiD' studies
- Muon collider physics and detector community
 - Joint proposal for future lepton-collider studies submitted to DOE
- JLAB heavy-photon search proposals
 - HPS: SLAC-based, fixed target, forward detector
 - DarkLight: MIT-based, gas-jet, asymmetric detector.
- FNAL dual-readout crystal calorimetry

Additional Information

- Wiki -<u>http://confluence.slac.stanford.edu/display/ilc/Home</u>
- lcsim.org http://www.lcsim.org
- ILC Forum http://forum.linearcollider.org
- LCIO http://lcio.desy.de
- SLIC http://www.lcsim.org/software/slic
- LCDD http://www.lcsim.org/software/lcdd
- JAS3 http://jas.freehep.org/jas3
- AIDA http://aida.freehep.org
- WIRED http://wired.freehep.org