The Feedback System for the LHC Luminous Region within the ATLAS High Level Trigger

SLAC Scientific Computing Workshop June 20, 2011

Rainer Bartoldus

Rainer Bartoldus

ATLAS as "Beam Instrumentation"

- The LHC is an extremely well instrumented machine
- It is amazing how much we know about its beams and how well we know it
- Nevertheless, close to the interaction region the experimental detectors are not only best positioned but overwhelmingly well equipped to characterize it
- Their sophisticated High Level Trigger systems allow to do that in real time

Rainer Bartoldus

Overview

- The ATLAS High Level Trigger (HLT) provides a unique platform for measuring LHC luminous region parameters
- Doing this in the online environment is particularly challenging in several ways:
 - Tightly constrained CPU and bandwidth budget of the trigger system
 - Massively parallel execution of algorithms that need special infrastructure to be aggregated and fanned out again
 - You get to see every event only once
 - No iterations on conditions, resolution etc: everything is 'at the edge of time'
- On the positive side, it offers unique advantages, too:
 - Unparalleled statistics, taking advantage of the many rejected events
 - Practically the only place with enough rate to see per-bunch time-evolutions
 - Very short latency to give quasi real-time feedback (minute scale)
- In addition, the Trigger itself needs to know very precisely and adjust to - the position, size and orientation of the luminous region (*e.g. b*-tagging)
- This measurement is part of a bigger feedback loop around the HLT

Primary Vertices

At present luminosities, just above 10³³ cm⁻² s⁻¹, there are on average 6 interactions per bunch crossing

- Called "pile-up"

- In principle these allow us to make several measurements on each event
- However, they are computationally very expensive to reconstruct and resolve in real time

Rainer Bartoldus

ATLAS High Level Trigger

- Runs after the Level 1 hardware trigger
- Massively parallel, farm of 1000+ nodes
- Two stages: Level 2 (L2) + Event Filter
- Current rates: 50 kHz L1 \rightarrow 4.5 kHz L2 \rightarrow 400 Hz Event Filter (logging to disk)
- L2 does partial reconstruction
 - First trigger with access to Si-tracker data
- Chose L2 Trigger to host beam spot algorithm
 - Highest available statistics, low latency
 - But: challenge to do full scan of silicon tracker detectors for data transfer and pattern recognition, track reconstruction
 - At the edge of available bandwidth + CPU
- Currently 10 racks of 30 nodes with 8 cores each (2400 processes)
- From the spatial distribution of primary vertices we extract through fits the position, size, and orientation of the luminous region
 - Parameters are the centroid x,y,z; widths $\sigma_x, \sigma_y, \sigma_z$; and title angles θ_{xz}, θ_{yz}

Primary Vertex Distributions

- Projections of the threedimensional distribution of reconstructed primary vertices are histogrammed and published once per minute
- They are aggregated ("gathered") across the farm and re-published
- The large amount of available statistics gives rise to very precise determinations of all parameters
- In addition, the vertex count can serve as a measure of luminosity (although this gets increasingly difficult with pileup)

2.5 /ertex y [mm] 2.0 10^{4} 1.5 1.0 10^{3} 0.5F 0.0 10^{2} -0.5 -1.0 ATLAS Operations May 29 2011 10 -1.5 LHC Fill: 1815 $\sqrt{s} = 7 \text{ TeV}$ -2.0 **Online Primary Vertex** -2.5^L....l.**.**....... -2.5 -2 -1.5 -1 -0.5 0 0.5 2 2.5 15 Vertex x [mm]

- Transverse distribution of 100,000 vertices reconstructed by the HLT
- One minute of data taking!

Time-Variation of Beam Position

Three-dimensional centroid position is measured over the course of several LHC fills Significant variations of the transverse position (from orbit corrections and drifts) are visible within a fill and from fill to fill Similar significant longitudinal time variations are related to RF-

phase changes

Rainer Bartoldus

Time-Evolution of Luminous Size

- Effect of transverse emittance blow-up during each fill is clearly visible
 - Approximately 15% horizontal, 10% vertical luminous width increase over a 10 hour fill
- Longitudinal emittance growth behaves similarly
- Fill-to-fill variations are comparatively small, but not negligible

LHC Feedback

TLAS:

ates /TRP

rowser

tatisticsOverview

ertexDistributions

ertexProperties rackDistributions eamLineTilt erBunchMonitoring plitVertices ATLAS Operations

Live histograms are published once a minute

Available in the control room as well as over the web

Give details of the track/vertex distributions and parameters

29-May-2011 12:07:26	Fill #: 1815	Energy: 3500 GeV	l(B1): 1.29e+14	I(B2): 1.30e+14
Accelerator Mode:	PROTON PH	HYSICS Be	am Mode:	STABLE BEAMS
Active Filling Scheme:		50ns_1092b	+1small_1042_35_1	L008_108bpi
Active Hypercycle:	3.5TeV_10Aps			
	ATLAS	ALICE	CMS	LHCb
Beta*	1.60 m	10.00 m	1.50 m	3.00 m
Crossing Angle (urad)	-120(V)	80(V)	120(H)	-250(V)
Spectrometer Angle (urad)		no_value(\	/)	no_value(V)
Beam Separation (mm)	0(H)	.3(H)	5(V)	11(V)
Expected Collisions per tu	rn 1042	35	1042	1008
	ATLAS	ALICE	CMS	LHCb
BPTX: deltaT of IP (B1–B2)	0.02 ns	0.10 ns	-0.01 ns	0.01 ns
Luminous size (x,y) in um	25.0,24.	9	25.8,23.6	45.8,44.1
Luminous size (z) in mm	56.1		52.7	41.1
Lumi Centroid (x,y) in um	-46.8,108	1.9	179.0,-746.	7 462.3,-17.1
Lumi Centroid (z) in mm	-3.6		-6.2	0.1
Luminous Tilt in urads	-12.24,-53	8.45	59.75,78.53	-30.98,43.54

The luminous region parameters are extracted through fits also once a minute

Corrections are performed and values are sent over to the LHC

Rainer Bartoldus

Beam Spot Parameter Redistribution

- Time variations make it necessary to update parameters used by the HLT **during running** (including a bootstrap at the beginning of a fill)
- Critical for algorithms sensitive to primary vertex such as *b*-tagging
- The first challenge is how to transmit the parameters back to the many thousands of HLT processes (on a sharp time boundary)
- ATLAS has a proxy-technology for database configurations that makes it possible to do such updates extremely fast also within a run

- CORAL Server & Proxy
 - Dedicated database technology developed for ATLAS HLT as example
 - Proxy hierarchy allows simultaneous access of 1000s of clients
 - *Multiplexes* and *caches* queries and responses

(Collaboration with CERN IT + U.Mainz)

High Level Trigger Feedback Loop

Rainer Bartoldus

Rainer Bartoldus