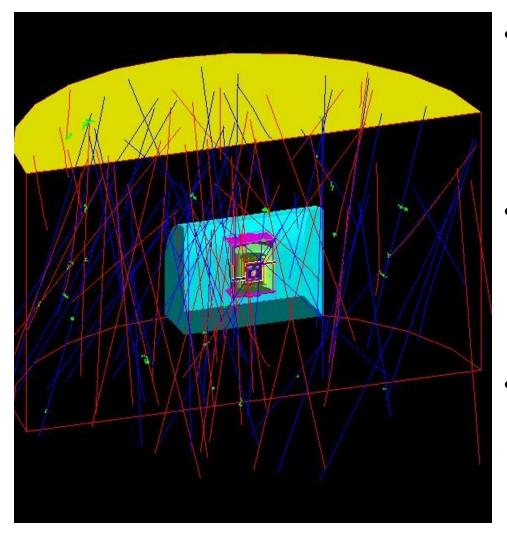

Background Simulation for Experiments

Dennis Wright Scientific Computing Workshop 20 June 2011

SLAC Team Simulation Contributions

- The SLAC team provides development, support and integration of various simulation tools used by several experiments
 - ATLAS, CDMS, EXO
- Tools developed, maintained or used by SLAC team
 - Geant4
 - FLUKA
 - Cosmic muon generator codes
 - Simulation framework

ATLAS Cavern Background Simulation



- Simulate beaminduced background
- Estimate intensitydriven rates in muon chambers
- PPA-SCA contributors
 - Tatsumi Koi
 - Dennis Wright

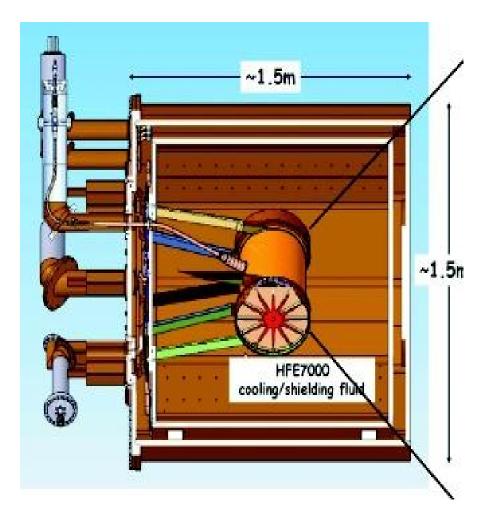
ATLAS Background Simulation

- Neutrons and gammas from beam interaction in beamline and shielding cause pile-up in the ATLAS muon chambers
 - use simulation to estimate pile-up rate
- Stand-alone Geant4/FLUKA simulation of ATLAS detector and cavern developed to produce files of rays to be fed into Athena (full ATLAS simulation)
 - Geant4 geometry
 - Pythia for initial collisions
 - FLUKA for propagation through beamline and shielding
- New Athena generator developed to convert these rays from FLUKA format to ATLAS format and transfer them to Athena for tracking

SuperCDMS Cavern Background Simulation

- Large mass Ge dark matter search
 - Ge nucleus recoil from χ_0 scatter
- Challenges
 - cosmic-ray-induced neutrons
 - natural radioactivity
- PPA-SCA contributors
 - Mike Kelsey
 - Dennis Wright
 - Makoto Asai

CDMS Background Simulation


- Nuclear recoils from neutralino scattering can be mimicked by:
 - muon-induced neutrons (capture or mu-nuclear reactions)
 - $-\alpha$ s from radioactive decay or fission can produce neutrons from α -n reactions
 - electrons from radioactive decay in the cavern walls
- Simulations of all of the above done using Geant4
- Flexible Geant4-based framework developed to allow simulation of many different detector/lab/generator combinations

- all user-configurable

• Studies underway of cosmic ray muon generators

- proposed translation of some Fortran generators into C++

EXO Natural Radioactivity Simulation

- Neutrinoless double
 beta decay
 - ${}^{136}Xe \rightarrow {}^{136}Ba + e^{-} + e^{-}$
- Goal:
 - is v Majorana ?
 - measure its mass
- Challenges:
 - possibly zero branching ratio
 - backgrounds, cosmic and radioactive

EXO Radioactive Decay Improvements

- Very small (or non-existent) branching ratio of neutrinoless double beta decays
 - even low-probability radioactive decay bacgrounds must be well-understood
- Background simulation done with Geant4, but improvement required in G4 radioactive decay module
 - Forbidden decays (such as ⁴⁰K)
 - Electron screening effects
 - Complete relativistic treatment of beta spectra
 - Correlated decays
 - Random ordering of decay products in U-Th decay chain
 - Work on the above list has just begun