
Ft2Util_2:
code review

Giacomo Vianello
(CIFS/SLAC)

June 7th, 2011

2

Pointing and position
(Magic 7 file)

ft2Util_2

Fake FT2 file

Recon
1The fake FT2 file contains only pointing and position information (LIVETIME=0 for every
entry). It is requested by L1 at the crumb level, and it is used as input to Recon.

Magic 7 file: a text file:

●Every line is a ATT (pointing) or ORB (position) message
●ATT @ 5 Hz, ORB @ 1 Hz
●Pointing and position are known exactly once per second (concurrent
ATT and ORB message)

(see the main page of the Doxygen documentation for more details)

Goal 1: fake1 FT2 file

●In the ideal case, this is basically just re-organizing the
information contained in the Magic 7 file

●If there are gaps in the M7 file, this could involve interpolating or
extrapolating some quantities.

3

Goal 1: fake FT2 file
Steps:

●Parse the command line (Anyoption), get the configuration parameters
(Configuration), instantiate the Ft2 class (makeFT2.cpp)

●Inside the constructor Ft2::Ft2(...):
● Parse the Magic 7 file (Magic7::Magic7(..)), determine the first time when ATT

and ORB are concurrent and build a vector of times (in MET) starting there,
with 1s increment, until the end of the file (Magic7::setupTimeIntervals())

● Starting from the vector of times reflecting the Magic 7 entries
(magic7.timeIntervals), set up the time intervals to be written in the FT2 file,
i.e., cut or pad to include the start and stop time provided by the user and
nothing else

● For each time instant save (in std::maps):
● a Status class: it provides 3 members to get all the quantities related to the

spacecraft (ExtendedPointingInfo spacecraft) or the LAT (LatInfo lat), or
the direction of the sun (astro::SkyDir sun)

● a inSAA flag (true/false) based on M7 content
● a livetime=0 (useless for fake FT2)

●Generate a FITS file with all the information obtained from the 3 maps filled
above, organized in columns (ft2::writeFT2file())

http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/make_f_t2_8cpp.html
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_ft2.html#776c4e3b99b41de3486fad89f47ca3f8
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_magic7.html#2e40dee15de1889f30b915c608697585
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_magic7.html#89e19774982a607a71ccb3e9732d90f3
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_status.html
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_extended_pointing_info.html
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_lat_info.html
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_ft2.html#3d6da02f9ede978e04f4a9832a0c9c56

4

Pointing and position
(Magic 7 file)

ft2Util_2

run FT2 file

2The run FT2 file contains the pointing, position and livetime information for a whole run. It
is called by L1 at the run level.

Digi file: a ROOT file:

●Tons of information about
every event
●We are interested in the
livetime and elapsed counters,
as well as the event IDs

Goal 2: run2 FT2 file

Livetime, elapsed time, event list
(Digi file)

Event list after recon
(Merit file)

Data gaps
(DigiGAP file)

5

Livetime

● The livetime between two events e
1
 and e

2
 is the difference3 in the value of

livetime counter times the conversion factor between ticks and seconds

● The elapsed time is the difference3 in the elapsed counter times the conversion
factor

● The conversion factor can vary slightly due to clock drifts (as effect of
temperature, for example)

● These effects are corrected for by comparing the number of ticks in one second
with the elapsed time taken from the GPS. It is exactly the same procedure used
to assign a time stamp to the events.

3 In both cases the value of the counter has no meaning, only the difference is meaningful

6

Livetime
● Normally, the livetime between t

1
 and t

2
 is:

where L
i
, t

i
,c

i
 are respectively the livetime counter value, the time of the i-th event, and

the conversion factor; e
k
 is the first event after t

1
 and e

z
 is the last event before t

2
.

Livetime between the
first and last event in the

interval t
1
-t

2

Livetime between t
1

and the first event

Livetime between the
last event and t

2

time

Digi events:

t
1

t
2

e
k

e
z

e
z+1

e
k-1

t
k

t
z

t
z+1

t
k-1

7

Livetime
There can be 2 other sources of dead time, to be subtracted from the result of the
previous formula:

● Gaps in data: data downloaded from the SC are incomplete. Events falling in the gaps are
lost. They will lack in both the Digi both the Merit file. The time between the last event before
(e

b
) and the first event after the gap (e

a
) is 100% dead time. The event ID of e

b
 and e

a
 are

reported in the digiGAP file.

● Recon crahes: some events contained in the Digi file are not present in the Merit file,
because for some reason they couldn't be reconstructed. The time between a “dead” event
and the previous one is considered 100% dead time:

D D

Digi events:

Merit events:

t
1

t
2

time

dead

D D

Digi events:

Merit events:

t
1

t
2

time

dead
e

b
e

a

8

Livetime

There are different possible combinations between t
1
 and t

2
 and the position of gaps:

Digi events:

Merit events:

t
1

t
2

time

dead

Digi events:

Merit events:

t
1

t
2

time

deadalive

etc...

●Compute the fraction of deadtime
pertaining to the interval t

1
-t

2
, and

subtract only that from the livetime

9

Goal 2: run FT2 file

Steps:

●Parse the command line, get the configuration parameters, instantiate the Ft2
class (makeFT2.cpp)

●Inside the constructor Ft2::Ft2(...):
● Parse the Magic 7 file (Magic7::Magic7(..))
● Determine the time instants when ATT and ORB are concurrent (

Magic7::setupTimeIntervals())
(or they should be, but they aren't because of gaps in the M7 file)

● Cut the time instants vector at the start and stop time provided by the user
● For each time instant save (in std::maps):

● a Status class: it provides 3 members to get all the quantities related to
the spacecraft (ExtendedPointingInfo spacecraft) or the LAT (LatInfo lat),
or the direction of the sun (astro::SkyDir sun)

● a inSAA flag (true/false) based on M7 content
● The livetime between this time instant and the following one

(Livetime::operator())

●Generate a FITS file with all the information obtained from the 3 maps filled
above, organized in columns (ft2::writeFT2file())

http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/make_f_t2_8cpp.html
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_ft2.html#776c4e3b99b41de3486fad89f47ca3f8
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_magic7.html#2e40dee15de1889f30b915c608697585
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_magic7.html#89e19774982a607a71ccb3e9732d90f3
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_status.html
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_extended_pointing_info.html
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_lat_info.html
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_livetime.html#4441854fab2bb8df3dbe22b4e0753fd2
http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/classft2_util__2_1_1_ft2.html#3d6da02f9ede978e04f4a9832a0c9c56

10

Goal 3: 30s FT2 file

Steps:

●Parse the command line, get the configuration parameters (mergeFT2.cpp)

●“Rebin” the input 1s FT2 file to a new bin size (usually 30s). The “bin size” has
to be integer:

● Output bins are long dt, BUT the algorithm stops the merging process
before 30 s and begin a new bin if one of the following circumstances
happen:
● LAT_CONFIG changes
● LAT_MODE changes
● DATA_QUAL changes
● LIVETIME becomes zero (saturation or digi crash)

http://www.slac.stanford.edu/~heather/ft2Util_2/doxy-html/merge_f_t2_8cpp.html#0ddf1224851353fc92bfbff6f499fa97

11

Sweep events

● Sweep events are solicited triggers

● They always come in pairs (two events with the same event ID one after the
other)

● There is always a sweep events at the beginning of a run, and there is usually a
sweep events at the end of a run

12

Sweep events
At the beginning of a run, there are 4 things happening:

A) Sweep event issued (solicited trigger) at t
s

B) Window open for physics at t
open

C) End of the read out of the sweep event at t
readed

D) First physics event of the run at t
1

●t
open

 is independent from the actual reading of the sweep event.
●If t

readed
 > t

open
, the livetime is just (L

1
 – L

s
)*c (as usual)

●If t
readed

 < t
open

, there is an additional deadtime to take into account, which is (t
open

-t
readed

)
●t

open
 = 10 x the number of ticks requested to complete a command (currently 10 x 196 = 1960 ticks).

Thus, to understand if C is before B, we can take the deadtime between the sweep event and the first
physics event: if this deadtime is > 1960 ticks, then t

readed
 > t

open
, otherwise t

readed
 < t

open
.

time

Digi events:
e

1
e

2
s

t
1

t
2

t
s

s

t
open

t
readed

time

Digi events:
e

1
e

2
s

t
1

t
2

t
s

s

t
open

t
readed

dead

dead STILL
DEAD!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

