THE MAGIC VIEW OF PG 1553+113

ELISA PRANDINI⁽¹⁾, Fabrizio Tavecchio⁽²⁾

for the MAGIC Collaboration, and S. Buson, S. Larsson for the Fermi/LAT Collaboration

(1) prandini@pd.infn.it INFN - University of Padova, Italy; (2) INAF - Osservatorio di Brera, Italy

ABSTRACT -- We present the results of five years (2005-2009) of MAGIC observations of the BL Lac object PG 1553+113 at very high energies (VHEs). Adding the new data set (2007-2009) to previous observations, this source becomes one of the best long-term followed sources at energies above 100 GeV. In the last three years of data, the flux level above 150 GeV shows a marginal variability. Simultaneous optical data also show only modest variability that seems to be correlated with VHE gamma-ray variability. We also performed a temporal analysis of all available Fermi/LAT data of PG 1553+113 above 1 GeV. Finally, we present a combination of the mean spectrum measured at VHE with archival data available for other wavelengths. The mean Spectral Energy Distribution (SED) can be modeled with a one-zone SSC model, which gives the main physical parameters governing the VHE emission in the blazar jet.

THE MAGIC TELESCOPES

MAGIC is a stereo system composed of two new generation Imaging Atmospheric Cherenkov Telescopes located on La Palma, Canary Islands, Spain at ~2200 m asl. MAGIC observes the VHE γ-ray sky at energies above 60 GeV. Data presented here were collected before Autumn 2009, when MAGIC was operating with a single telescope, referred as MAGIC I.

MAGIC I PARAMETERS

- Energy threshold: 60 GeV (25 GeV with a special trigger for pulsar observations)
- Sensitivity ($t_{obs} = 50 \text{ h} /5\sigma \text{ significant}$ signal): 1.6 % Crab Nebula flux
- Energy resolution: < 20 % at E> 200 GeV
- Angular resolution: ~0.1 deg

PG 1553+113

- PG 1553+113 is a BL Lac object (extremely WEAK EMISSION LINES in the optical spectra), located in the Northern hemisphere
- Discovered in 1986 by Green et al., its REDSHIFT IS UNCERTAIN
- Several attempts to determine its redshift were done in the past
- Recent z determinations: z~0.4 [6,8]
- Bright Fermi/LAT source [1]

VHE OBSERVATIONS:

The blazar PG 1553+113 was detected at VHE by the MAGIC I and H.E.S.S. telescopes in 2005 [2,3]. Since then, the source was MONITORED by MAGIC I [4,5].

Table 1 reports the details of the good quality data selected after severe quality cuts. Due to changes in the yearly performance, data were analyzed year by year.

DATA TAKING CONDITIONS

The energy threshold is ~90 and ~80 GeV for 2006 and 2007 observations respectively, ~150/160 GeV for 2008 (poor observing conditions) and 2009 data (moderate moon light observation). The zenith angle of the observations extends to 36 deg.

INTEGRAL FLUX

RESULTS

DIFFERENTIAL FLUX • Yearly flux state: marginal variations of the flux level (Tab 1, Fig 4),

• MEAN FLUX compatible with a power law of index Γ = 4.27 ± 0.14 (Fig.

· De-absorbed differential energy spectrum (EBL model [7]) is compatible with a power law of index 3.09 \pm 0.20 (assuming z = 0.4;

slope stable $\Gamma \approx 4$ within the errors (large in 2009, smaller signal)

- * The VHE integral flux state, upper panel Fig 3, shows modest variations (4% to 11% of the Crab Nebula flux above 150 GeV, Table 1)
- Moderate variability in OPTICAL and VHE γ-RAYS, with hints of CORRELATION (Fig. 2)
- . High variability in X-RAYS
- * Hints of variability in HIGH ENERGY (HE) γ-RAYS

1 .		HE gamma-rays (FermilLAT)	a lu
(m)	preliminary		What also sale
* T			7,,14,430
	53300	54900 54500 Time [MID]	55000

Flux (> 150 GeV) [cm⁻² s⁻¹]

(1.40 ± 0.38)*10-11

(3.70 ± 0.47)*10⁻¹¹

(1.63 ± 0.45)*10-11

+ , 14		§ 10°
Optical (KNA-North)	· www.	100 m m m m m m m m m m m m m m m m m m
X-rays (Swift/ART)	Tanaga ay	10 ¹¹
PE generocops (FermiLAT)	What I did	10
4900 34560 Time [MID]	55000	Fig 4 – 2007-2009 differential energy spectra.

4.1 ± 0.3

4.3 ± 0.3

3.6 ± 0.5

5)

***************************************		2 10*	
		[Com.	The second
	The second	0.00 GN/dE (Cm.)	
		10"	
	1 1	10*52	
2007 2008		10*5	PG 1553+113 2605-2009 mean spectrum
2009 Crab Flux (Albert et al. 2008a)		1014	PG 1553+113 2505-2009 mean spectrum deabsorbed Crab Flux (Albert et al. 2008a)
102	Energy [GeV]	10	Energy

MODELING THE SED

The MEAN overall SED can be fitted with a simple one-zone SSC model [9] (Fig 6, model parameters listed in Tab 2).

Table 1 – PG	1553+113	datasets co	llected	by M	AGIC	and	anal	yses :	resul

150 (Calima)

160 (Moon Obs)

REFERENCES [1] A.A. Abdo et al., 2010, ApJ, 708, 1310

11.5

8.7 (6.9 flux)

8.5 (6.9 flux)

[2] F. Aharonian et al., A&A 477, 2008, 481-489

[3] J. Albert et al., 2007, ApJ Letters 654, L119 - L122

[4] J. Albert et al., A&A 493, 2009, 467

[5] J. Aleksić et al., A&A 515, 2010, A76

[6] C.W. Danforth et al., 2010, ApJ, 720, 976

[7] A. Dominguez et al., 2011, MNRAS, 410, 2556 [8] E. Prandini, G. Bonnoli, L. Maraschi, M. Mariotti, & F. Tavecchio, 2010, MNRAS 405, L76

[9]L. Maraschi, & F. Tavecchio. 2003, ApJ, 593, 667-675

~4%

~11%

~5 %

[10] A. Treves, R. Falomo, R., & M. Uslenghi, 2007, A&A, 473, L17