
1.

2.

3.

SLIC From Scratch on Linux

The SLIC full simulator program requires the setup of 8 different software packages, not counting the required build tools.

This guide provides a step-by-step walkthrough covering package and tool installation.

Preliminaries

Tools

You need the following command line tools.

cvs
g++ (3.2 and 3.3 seem to work okay. I doubt that 3.4 works.)gcc
make
gzip
tar (that's the GNU version)

If you are missing one of these...are you sure that you're running Linux?

Any recent versions of these programs should do okay.

You also need a Java VM, for running ant.

java (to run ant)

Also, is mighty useful for retrieving files via http.wget

Work Area

The SLIC package and its dependencies will be installed into a common work area.

From the shell, create a work directory where you have a lot of space and go into it.

cd ~
mkdir sim
cd sim

Create the file with the following contents.setup.sh

#!/bin/sh
export sim_work=~/sim

Source the script to setup the work dir.

source setup.sh

Package Installations
You are now ready to install the simulation packages.

Page is Deprecated

This page contains old instructions that are kept for reference purposes only. Please refer to the page for a Simulation Software Distribution
much easier way of building slic and its dependencies.

The script will henceforth be referred to as . At the end, it will have all of the environment variables required by $sim_work/setup.sh setup.sh
SLIC and its dependencies. Throughout the guide, any time a line is added to , you should also execute this line in your current setup.sh bash
shell. Probably the easiest way to do this is by adding to the script first and then (re)sourcing it.

http://www.gnu.org/software/wget/wget.html
https://confluence.slac.stanford.edu/display/ilc/Simulation+Software+Distribution

1.

2.

3.

4.

5.

6.

7.

Package Versions

Currently, the SLIC, LCDD, LCIO, GDML, and LCPhys CVS heads should all work fine together.

The following is a recent, tested configuration.

slic v1r12p0
lcio v1r5p0_slic
lcdd v1r8p2
lcphys v1r0p1
gdml 2.3.0
geant4 7.1.0
clhep 1.9.2.1
xerces 2.6.0

The Geant4 version must be or SLIC will not compile.7.1.x

CLHEP

CLHEP has installation instructions (http://wwwasd.web.cern.ch/wwwasd/lhc\+\+/clhep/INSTALLATION/newCLHEP-install.html) for version 1.9 and up. But
you should not need them to setup the package.

Create a working directory for CLHEP and go into it.

mkdir clhep
cd clhep

Download the CLHEP tarball.

wget http://cern.ch/clhep/clhep-1.9.2.0.tgz

Unzip to your work directory.

tar -zxvf clhep-1.9.2.0.tgz

Change to CLHEP directory.

cd 1.9.2.0/CLHEP

Configure the build. (Now go get some coffee.)

./configure --prefix=`cd ../..; pwd` --disable-shared

Build the library and install it. (Get some more coffee.)

make
make install

Add the following to setup.sh

export CLHEP_BASE_DIR=$sim_work/clhep

Now that the CLHEP dependency is satisfied, you should be able to install Geant4.

Possibly some of these software packages already exist on your system.
You still need to setup the environment accordingly. Scan over the package installation instructions to see what environment variables need to
be defined. Usually, this is one variable per package (with the exception of Geant4, which has many).

The same shell window should be used throughout the installation process in order to preserve the environment variables.

http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/

1.

2.

3.

4.

5.

6.
7.

8.

9.

10.

11.

Geant4

Geant4 is probably the most difficult application to install of SLIC's dependencies, because there are a lot of options, it takes a long time, and it requires
several different commands. I will describe a minimal installation procedure with support for built-in UI and visualization drivers. You can always make
update the libraries later if you decide to change these settings.

Return to the work dir, create a Geant4 subdir and go into it.

cd $sim_work
mkdir geant4
cd geant4

Download the Geant4 tarball.

wget http://geant4.cern.ch/geant4/source/source/geant4.7.1.tar.gz

Unzip it.

tar -zxvf geant4.7.0.p01.tar.gz

Set the following variables in . (You should not need to run .)setup.sh Configure

export G4INSTALL=${sim_work}/geant4/geant4.7.1
export G4SYSTEM=Linux-g++
export G4LIB_USE_GRANULAR=1

If you want to enable OpenGL-based visualization, set these variables, too.

export G4VIS_BUILD_OPENGLX_DRIVER=1
export G4VIS_USE_OPENGLX=1
export OGLHOME=/usr

Refer to the for additional enviroment variables that you might want to set.Application Guide Section on Enviroment Variables
Go into the Geant4 base dir.

cd geant4.7.1

LCPhys requires that a special flag is set in order to use the latest Kaon model. At the end of , insert the following line config/architecture.gmk ex
:actly as it appears below

CPPFLAGS += -DG4BERTINI_KAON

Hopefully, this hack will be remedied soon!
Build the libraries, which will be placed at . (This could take up to a few hours depending on your machine.)$G4INSTALL/lib/Linux-g++

cd source
make

Install the headers into the directory.$G4INSTALL/include

make includes

Build the physics list libraries. These will go into the default location at .$G4INSTALL/lib/plists/Linux-g++

Due to limitations of GDML, Geant4 must be compiled with granular libraries. This should be fixed soon.

These procedures are geared towards setting up a Geant4 installation for SLIC. If you want a full Geant4 setup, I recommend running minimal
the script. It will walk you through setting up a complete enviroment.Configure

http://wwwasd.web.cern.ch/wwwasd/geant4/geant4.html
http://wwwasd.web.cern.ch/wwwasd/geant4/G4UsersDocuments/UsersGuides/ForApplicationDeveloper/html/Appendix/makeFile.html

11.

1.

2.

3.

4.

1.

2.

3.

4.

cd ../physics_lists/hadronic
make

Hopefully, Geant4 has been installed successfully, and you don't have too many more gray hairs! (Did you remember to set ? LCPhys G4BERTINI_KAON
won't work without it.)

LCPhys

SLIC requires a special physics list written by Dennis Wright for Linear Collider physics.

Go back to the work dir.

cd $sim_work

Checkout the physics list from CVS.

cvs -d :pserver:anonymous@cvs.freehep.org:/cvs/lcd checkout LCPhys

Assuming that the environment from the Geant4 installation is still in place, you can build this like any other physics list, and the library should be
installed into .$G4INSTALL/lib/plists/WIN32-g++

cd LCPhys
make

Set the LCPhys variable in .setup.sh

LCPHYS_BASE=$sim_work/LCPhys

LCIO

LCIO provides binary output capabilities.

LCIO has a with a whole . Thanks, Frank!very nice manual section on installation

I will still walk you through the basic procedure.

Go back to the work dir.

cd $sim_work

Checkout LCIO from CVS.

cvs -d :pserver:anonymous@cvs.freehep.org:/cvs/lcio checkout lcio

Add these lines to your .setup.sh

export LCIO=${sim_work}/lcio
export PATH=$LCIO/tools:$LCIO/bin:$PATH

Build the libraries using the bundled and tools.aid ant

cd $sim_work/lcio
ant aid.generate cpp

Xerces-C++

Installation requires a working Java runtime for support.ant

http://www.slac.stanford.edu/comp/physics/geant4/slac_physics_lists/ilc/ilc_physics_list.html
http://lcio.desy.de/
http://lcio.desy.de/v01-04/doc/manual_html/manual.html
http://lcio.desy.de/v01-04/doc/manual_html/manual.html#SECTION00030000000000000000
http://xml.apache.org/xerces-c/

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

Go back to the work dir, create a subdir for Xerces-C++, and go into it.

cd $sim_work
mkdir xercesc
cd xercesc

Download the Xerces tarball.

wget http://www.apache.org/dist/xml/xerces-c/xerces-c-src_2_6_0.tar.gz

Unzip the tarball.

tar -zxvf xerces-c-src_2_6_0.tar.gz

Set for the build in your environment, only.XERCESCROOT

export XERCESCROOT=${sim_work}/xercesc/xerces-c-src_2_6_0

Go into the Xerces-C++ build area.

cd xerces-c-src_2_6_0/src/xercesc

Configure the build.

runConfigure -plinux -cgcc -xg++ -minmem -nsocket -tnative -rpthread -P `cd ../../..; pwd`

Build and install it.

make
make install

In , set to the installation area and add the DLL location to the .setup.sh XERCESCROOT PATH

export XERCESCROOT=${sim_work}/xercesc
export LD_LIBRARY_PATH=$XERCESCROOT/lib:$LD_LIBRARY_PATH

GDML

GDML's CVS is not directly accessible from the command line, but a tarball is available through a WWW interface.

Download a snapshot of the current CVS head to using this link in your browser: sim_wrk http://simu.cvs.cern.ch/cgi-bin/simu.cgi/simu/GDML2
./GDML2.tar.gz?tarball=1

Unzip the tarball.

tar -zxvf GDML2.tar.gz

Change into the CPPGDML directory.

cd GDML2/CPPGDML

Set and in .GDML_BASE PLATFORM setup.sh

export GDML_BASE=${sim_work}/GDML2/CPPGDML

Configure the build.

When rebuilding Xerces-C++, which you will probably not need to do once you get it working, needs to be set back to the XERCESCROOT
Xerces-C++ source area rather than the installation base.

http://gdml.web.cern.ch/GDML/
http://simu.cvs.cern.ch/cgi-bin/simu.cgi/simu/GDML2/GDML2.tar.gz?tarball=1
http://simu.cvs.cern.ch/cgi-bin/simu.cgi/simu/GDML2/GDML2.tar.gz?tarball=1

5.

6.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

./configure --enable-shared-libs=no

Build it.

make

LCDD

Go to the work dir and checkout LCDD.

cd ${sim_work}
cvs -d :pserver:anonymous@cvs.freehep.org:/cvs/lcd checkout lcdd

Go into the LCDD dir.

cd lcdd

Configure the build.

./configure

Build the library.

make

Set the variable in .LCDD_BASE setup.sh

export LCDD_BASE=${sim_work}/lcdd

SLIC

Finally, you are ready to install the simulation "hub" package. After this, you will have a fully-featured Geant4 simulator on your Linux machine.

Go to the work dir and checkout SLIC.

cd ${sim_work}
cvs -d :pserver:anonymous@cvs.freehep.org:/cvs/lcd checkout slic

Go into the SLIC dir.

cd slic

Set the variable in .SLIC_BASE setup.sh

export SLIC_BASE=${sim_work}/slic

Configure the build.

./configure

Build the binary.

make all

If the build completes successfully, you should see SLIC's usage statement from the test run.

Running SLIC after Installation

http://www.lcsim.org/software/lcdd
http://www.lcsim.org/software/slic

1.
2.

3.

4.

When you want to run later in a Cygwin shell, should be in the , so that Windows can find the DLL at runtime. Since the other $XERCESCROOT/bin PATH
applications were linked-in statically, this should be the only setup requirement.

This is the procedure for running SLIC from the Cygwin commandline.

Open a bash shell.
Add Xerces-C++ bin to the load path.

export LD_LIBRARY_PATH=$XERCESCROOT/lib

Go to the SLIC directory.

cd ~/sim/slic

Run the executable.

bin/Linux-g++/slic [options]

If you receive an error message about a missing Xerces library, then make sure that the is setup correctly and Xerces-C++ was properly installed.PATH

Final Setup Script

The final version of should be similar to this.setup.sh

#!/bin/sh

work area
export sim_work=~/sim

clhep installation area
export CLHEP_BASE_DIR=${sim_work}/clhep

geant4
export G4INSTALL=${sim_work}/geant4/geant4.7.1
export G4SYSTEM=Linux-g++

LCPhys
export LCPHYS_BASE=${sim_work}/LCPhys

LCIO
export LCIO=${sim_work}/lcio

if rebuilding LCIO
export PATH=$LCIO/tools:$LCIO/bin:$PATH

Xerces-C++ installation area
export XERCESCROOT=${sim_work}/xercesc
export LD_LIBRARY_PATH=$XERCESCROOT/lib:$LD_LIBRARY_PATH

GDML
export GDML_BASE=${sim_work}/GDML2/CPPGDML

LCDD
export LCDD_BASE=${sim_work}/lcdd

SLIC
export SLIC_BASE=${sim_work}/slic

The above should be sufficient to "bootstrap" the environment for any future (re)builds of SLIC dependencies.

Running SLIC
To run SLIC once it is built, simply add the Xerces library location to your load path.

Then you can execute the binary from the directory.SLIC_BASE

export LD_LIBRARY_PATH=$XERCESCROOT/lib:$LD_LIBRARY_PATH
bin/Linux-g++/slic [args]

Done.
That's it.

If you think this guide could be improved in any way, then please contact the author

Someday, I will get around to packaging all of this as RPMs to save everyone the hassle.

Happy simulating...

Additional Resources
SLIC Homepage
Running SLIC at SLAC

SLIC Run Script

You should create a run script for your site, so that simply typing "slic" from the command line executes the simulator. A sample run script is
found in .$SLIC_BASE/scripts/run.sh

https://confluence.slac.stanford.edu/display/~jeremym
https://confluence.slac.stanford.edu/display/ilc/SLIC
https://confluence.slac.stanford.edu/display/ilc/Running+SLIC+at+SLAC

	SLIC From Scratch on Linux

