
Pre-DC2 Refactoring Proposal

Status bits

Storage of data producer names instead of status bits

Starting at CalClusters level, objects are less numerous in the event (as
compared to lower level objects) and can be a little bigger. This is why
we would prefer to store the producer name as a string in each CalCluster
and in each CalCorToolResult, rather than rely in status bits. Status bits
are predefined and can hardly be used with new/user algorithms, thus it
reduces flexibility.

To be removed:

CalCluster::*CLUSTER
CalCorToolResult::CALVALS, PROFILE, LASTLAYER, RAWENERGY

Worth to say: the use of this producer name by clients can be handy and
even necessary in some situation, but should be avoided whenever possible,
since this is restraining the global flexibility of the system.

IMPLEMENTED. READY TO COMMIT.

Avoid algo-oriented status bits

We should avoid status bits saying things about algorithms, because
this reduce our freedom with the way we arrange and change those
algorithms. We should prefer eventually status bits which say
things about the "state" of the data.

To be removed :

CalCluster::MIPTRACK
CalCluster::MOMENTS
CalCluster::ENERGYCORR
CalCluster::MIPFIT

IMPLEMENTED. READY TO COMMIT.

Generalize the validity status bits.

Is is safe to use status bits so to flag the data which is valid or not.

To be added :

CalCluster::AXIS (instead of MOMENTS) TO BE DONE.
CalEventEnergy::VALIDPARAMS IMPLEMENTED. READY TO COMMIT.

Etc.

It seems CalCluster::ISOLATEDCLUSTER is redundant, and equivalent
to !ALLXTALS.

To be removed:

CalCluster::ISOLATEDCLUSTER

For the remaining useful status bits (for example the ones saying
if this or that data is valid), the methods signatures could be
made more uniform in the various CalRecon classes.

IMPLEMENTED. READY TO COMMIT.

Info Fillers

Do we really need several info fillers ? Or event a list of
them to be applied at each event ? Can we better factorize the
code between the current two fillers ? Should we append the
filler name to the CalCluster producer name ?

UNDER WORK



Correction Tools

Kind of energy

It seems not all the tools are returning the same kind of energy.
Most of them are returning the evaluation of the total gamma energy.
We must investigate if CalValsCorrTool, which apparently returns the
cal-only energy, can be modified so to return the same as other tools,
and we must also investigate if Tkr code can be modified accordingly
(and what about CalRawEnergyTool ?).

TO BE DONE.

Handling of multiple clusters

Debate let us think that the tools should not process each cluster
individually, but should receive the complete list of available clusters.
They can then consider only the front/best one if they wish.

IMPLEMENTED. READY TO COMMIT.

CalTransvOffsetTool

It seems it is not used. As a first step, we want to remove
it from the list of default tools. What's more, it is not computing
an energy. If we must keep it, this should certainly not
be a kind of ICalEnergyCorr.

IMPLEMENTED. READY TO COMMIT.

CalEventEnergy

No more singleton

We want to enable multiple instances of CalEventEnergy, so that
one make several differetn interpretations of the event, for
example 1 Gamma and 2 PI0. As an additionnal benefit, this will
ease the management of CalEventEnergy in the TDS and in the
ROOT trees.

IMPLEMENTED. READY TO COMMIT.

CalEventEnergyAlg passes

The current implementation is more or less hard coding that there are
two passes, and select the best energy candidate depending on the pass.
We propose something more flexible : there is no information about the
pass, and the best energy candidate is selected depending on the ones
which are present in the list : energy of CalValCorrTools if it is present,
and CalRawEnergyTool otherwise.

To be removed :

CalCluster::PASS_ONE
CalCluster::PASS_TWO

IMPLEMENTED. READY TO COMMIT.

A detail: why duplicate the data fo the best CalCorToolResult ? Why not
simply point to it ?

UNDER WORK


	Pre-DC2 Refactoring Proposal

