
SALT on SLAC SDF
This page gives some basic instructions to running the on SDF. The Salt framework is a framework for training ML-based flavor tagging SALT Tutorial
algorithms in ATLAS. The tutorial page gives instructions for downloading the (note that the tutorial uses Tag 0.1).Salt package from gitlab

The Input Samples

The input files have been copied over from CERN's eos to Rachel's gpfs data area here: /gpfs/slac/atlas/fs1/d/rhyneman/salt_tutorial/

Submitting Training Jobs with Slurm

DO NOT TRAIN ON INTERACTIVE SDF MACHINES.

Edit whichever configuration file (i.e.) with the correct paths for the training data on SDF:SubjetXbb.yaml

 train_file: /gpfs/slac/atlas/fs1/d/rhyneman/salt_tutorial/Xbb-hybrid-resampled_scaled_shuffled.h5
 val_file: /gpfs/slac/atlas/fs1/d/rhyneman/salt_tutorial/Xbb-hybrid-validation-resampled_scaled_shuffled.h5
 scale_dict: /gpfs/slac/atlas/fs1/d/rhyneman/salt_tutorial//Xbb-scale_dict.json

SLAC currently has limited GPU resources. You may want to only train on a single GPU. To do so, edit the config file, setting the following: base.yaml de
 (under the block).vices: 1 trainer

To train, you'll need to submit a batch job to slurm. This requires a .sh script, such as the one below (edited from the script in the Salt submit_slurm.sh
repository):

https://ftag.docs.cern.ch/software/tutorials/tutorial-salt/
https://gitlab.cern.ch/atlas-flavor-tagging-tools/algorithms/salt

#!/bin/bash

Job name
#SBATCH --job-name=salt

choose the GPU queue
#SBATCH -p atlas
#SBATCH -p shared

requesting one node
#SBATCH --nodes=1
#SBATCH --exclusive

keep environment variables
#SBATCH --export=ALL

requesting 4 V100 GPU
(remove the "v100:" if you don't care what GPU)
#SBATCH --gres=gpu:a100:4
#SBATCH --gpus=1

note! this needs to match --trainer.devices!
#SBATCH --ntasks-per-node=1

number of cpus per task
useful if you don't have exclusive access to the node
#SBATCH --cpus-per-task=10

request enough memory
#SBATCH --mem=200G

Change log names; %j gives job id, %x gives job name
#SBATCH --output=/sdf/home/r/rhyneman/salt_tutorial/salt/salt/out/slurm-%j.%x.out
#SBATCH --error=/sdf/home/r/rhyneman/salt_tutorial/salt/salt/out/slurm-%j.%x.err

Comet
export COMET_API_KEY=MYKEY
export COMET_WORKSPACE=rhyneman
export COMET_PROJECT_NAME=salt-tutorial

speedup
export OMP_NUM_THREADS=1

echo "CPU count: $(cat /proc/cpuinfo | awk '/^processor/{print $3}' | tail -1)"

echo "Current node: ${SLURMD_NODENAME}"

move to workdir
cd /sdf/home/r/rhyneman/salt_tutorial/salt/salt/
echo "Moved dir, now in: ${PWD}"

activate environment
source /sdf/home/r/rhyneman/miniconda3/etc/profile.d/conda.sh
conda activate salt
echo "Activated environment ${CONDA_DEFAULT_ENV}"
echo "CUDA_VISIBLE_DEVICES: $CUDA_VISIBLE_DEVICES"

run the training
echo "Running training script..."
srun salt fit \
 --config configs/GN1Xbb.yaml \
 --data.num_jets_train 10000 \ # This is a very small number, just for testing! Change me :)

Note that you should change the Comet settings based on your own Comet account info. Also, I used "salt-tutorial" (instead of just "salt") as my project
name; I also changed the in the block of the config file accordingly. You should change the output and error project_name logger base.yaml
directories to your own spaces (and). You also need to use the "salt" directory of your own Salt #SBATCH --output=... #SBATCH --error=...
installation for the work directory (the command). Lastly, you may or may not want to use your own miniconda installation (though Rachel's should cd
work). If you do, change the path under the " " comment.activate environment

If you want to run with more than one GPU, make sure to edit the line (for N GPUs). I believe you also should edit the #SBATCH --gpus=N #SBATCH --
 option in the above script, as well as the option from the config file (in the section).ntasks-per-node=N devices: 1 base.yaml trainers

With the above script edited as needed, you should be able to submit by doing:

sbatch submit_slurm.sh

Submitting Testing Jobs with Slurm

Testing on slurm is essentially the same as training, but with a few key changes needed to the above submission script, as shown below:

#!/bin/bash

Job name
#SBATCH --job-name=salt_GN1Xbb

choose the GPU queue
#SBATCH -p atlas
#SBATCH -p shared

requesting one node
#SBATCH --nodes=1
#SBATCH --exclusive

keep environment variables
#SBATCH --export=ALL

requesting 4 V100 GPU
(remove the "v100:" if you don't care what GPU)
#SBATCH --gres=gpu:a100:4
#SBATCH --gpus=1 ### NOTE! The training method in Salt can only use one GPU!

note! this needs to match --trainer.devices!
#SBATCH --ntasks-per-node=1 ### NOTE! This needs to be set to 1, since we can only use one GPU!

number of cpus per task
useful if you don't have exclusive access to the node
#SBATCH --cpus-per-task=10

request enough memory
#SBATCH --mem=200G

Change log names; %j gives job id, %x gives job name
#SBATCH --output=/sdf/home/r/rhyneman/salt_tutorial/salt/salt/out/slurm-%j.%x.out
#SBATCH --error=/sdf/home/r/rhyneman/salt_tutorial/salt/salt/out/slurm-%j.%x.err

Comet
export COMET_API_KEY=5k4oCPRq8rFcxn5BShm83X0Fn
export COMET_WORKSPACE=rhyneman
export COMET_PROJECT_NAME=salt-tutorial

speedup
export OMP_NUM_THREADS=1

echo "CPU count: $(cat /proc/cpuinfo | awk '/^processor/{print $3}' | tail -1)"

echo "Current node: ${SLURMD_NODENAME}"

move to workdir
cd /sdf/home/r/rhyneman/salt_tutorial/salt/salt/
echo "Moved dir, now in: ${PWD}"

activate environment
source /sdf/home/r/rhyneman/miniconda3/etc/profile.d/conda.sh
conda activate salt
echo "Activated environment ${CONDA_DEFAULT_ENV}"
echo "CUDA_VISIBLE_DEVICES: $CUDA_VISIBLE_DEVICES"

run the testing
echo "Running testing script..."
srun salt test \
 --config logs/MYMODEL/config.yaml \ # Replace MYMODEL with your model name!
 --data.test_file /gpfs/slac/atlas/fs1/d/rhyneman/salt_tutorial/inclusive_testing_Mix.h5 \
 --data.num_jets_test 1000 \ # This is a very small number, just for testing! Change me :)
 --trainer.devices 1 \

The big changes to the Slrum options of the script are to set #SBATCH --gpus=1 and #SBATCH --ntasks-per-node=1 (these both must be set to 1 to
reflect the fact that Salt can only use 1 GPU in testing, unlike in the training loop). The other change is (of course) to replace the "train" command with a
"test" command (the part). The option in the salt command is there for the same reason.srun salt test --trainer.devices 1

The testing loop requires you to point to the config file in the area (the output area, which is a subdirectory of the directory). This should logs salt/salt
look something like "GN1Xbb" or "SubjetXbb", followed by a set of numbers, like: 20230216-T200512. The first part gives the name of the algorithm model
you were using, while the second is a time and date stamp. Make sure to replace "MYMODEL" in the above testing script with whichever model
subdirectory you want to run the testing loop with. The testing loop also requires you to point to the training dataset (specify with the --data.test_file
option). Feel free to keep using the one stored in Rachel's GPFS area.

Once the testing loop is complete, you can find the new, output .h5 file in the logs/MYMODEL/ckpts/ subdirectory. The above script allows salt to just use
whichever checkpoint model in the training which has the lowest validation loss, which may or may not be that of the final epoch from the training. You can
also specify which checkpoint to use by using the argument. Regardless, the output .h5 file will be named something like "epoch=XXX---ckpt_path
val_loss=XXX__test_Mix.h5".

Finally, to plot, just use the plotting script from the tutorial as usual (no need to run this on Slurm!).

Additional Notes for Environments

I (Rachel) am using a Singularity image for non-SALT studies, made from Ines Ochoa's Docker container (). This is a big image, and compiling it on here
SDF causes a crash due to insufficient directory space. The solution was to specify the when building the image, as follows tmp SINGULARITY_TMPDIR
(on SDF):

[rhyneman@sdf-login02 ~]$ export SINGULARITY_TMPDIR=/sdf/group/atlas/g/XbbXccTrainingData/singularity/
[rhyneman@sdf-login02 ~]$ singularity pull --dir /sdf/group/atlas/g/XbbXccTrainingData/singularity/ --disable-
cache vertexing.sif docker://miaochoa/vertexing

To use this container in an interactive SDF shell, one can just do: singularity shell /sdf/group/atlas/g/XbbXccTrainingData
 /singularity/vertexing.sif

One can also use this container in an SDF Jupyter notebook/shell by calling this Singularity image on creation. Just put the following commands in the
"Commands to initate Jupyter" box:

export SINGULARITY_IMAGE_PATH=/sdf/group/atlas/g/XbbXccTrainingData/singularity/vertexing.sif

function jupyter() { singularity exec --nv -B /sdf,/gpfs,/scratch,/lscratch ${SINGULARITY_IMAGE_PATH} jupyter
$@; }

NOTE: For some reason, the interactive session will default to a different python than what is contained in the Singularity image. You can call the correct
python from: ./opt/conda/bin/python

In order to install extra packages in Singularity, one can just pip these directly while in that singularity container. For example:

/opt/conda/bin/pip install atlas-ftag-tools

Note that for the plotting script (in progress, based on the SALT tutorial), one needs to pip-install: and .puma-hep atlas-ftag-tools

https://hub.docker.com/repository/docker/miaochoa/vertexing/general

	SALT on SLAC SDF

