
SCons A Demo Implementation using SciTools
Introduction

Navid has been busy setting up a demonstration environment using SCons and the ScienceTools v8r2.

Location of Installation

SCons is installed here at SLAC: /afs/slac/g/glast/applications/SCons/0.97.0d20070809/bin/scons
There's a copy of SciTools in Navid's area: /nfs/farm/g/glast/u06/golpa/ST-v8r2-scons/ScienceTools
If you desire to run SCons, please read below on how to check it out from the CVS copy.

CVS

The CVS copy is located in . To check out the code set your CVSROOT environment variable to point to that /nfs/farm/g/glast/u33/golpa/cvs
location. Once that is done you can check out a v8r2 version of ScienceTools by issuing the command cvs co -r ScienceTools-v8r2

.ScienceTools-scons

To allow CVS to do such checkouts while staying compatible with CMT, the structure of CVS has been changed as follows:

CVSROOT
 |
 +--ScienceTools/
 |
 +--astro/
 | |
 | +--cmt/
 | |
 | +--src/
 | |
 | +--...
 +--...
 |
 +--ScienceTools-scons
 |
 +--astro/ --> Symlink back to above package
 |
 +--Likelihood/ --> Symlink back to above package
 |
 +--...
 |
 +--SConsctruct
 |
 +--externals.scons
 |
 +--site_scons/
 |
 +--site_tools/
 |
 +--addLibrary.py
 |
 +--registerObjects.py

Basic SCons commands

To see a list of available command line options type ./afs/slac/g/glast/applications/SCons/0.97.0d20070809/bin/scons -h
To do a build of all the libraries and the main applications type /afs/slac/g/glast/applications/SCons/0.97.0d20070809/bin

./scons with-GLAST-EXT=/path/to/GLAST_EXT
To build only a specific package (and all the libraries it depends on) type the previous command adding the name of the package(s) to the end.
To build everything above and test applications type the previous command but using the package name .all

Interesting Details and things we may need to discuss

A new version of SCons has been installed since the previous version had a bug with swig and variant builds.

1.

2.

There is a top-level SConstruct file which contains configuration/build information to be used "globally". This includes options for the compilation such as
debug and optimization flags and contains code to find the SConscript files part of this build. See the Gory Details of the SConstruct file for more
information. There is another file at the top-level called externals.scons which is used to set up the location of the external libraries. More on this point
further down in the External Libraries section.

Location of SCons specific files and package structure

Each package contains its own SConscript file which act as SCons' version of CMT's requirements file. You can see an example for the facilities package
further down on this page. The SConstruct file communicates the location of the SConscript file for each package.

The virjpk subdirectories are not in place or assumed in this organization. There is a note out to Riccardo to check if that arrangement is acceptable to
MRStudio. Doing without the package-tag subdirectories allows us to utilize CVS directly for our checkouts, rather than devising a way to recreate CMT
checkouts.

External Libraries

Code in the SConstruct file provides a mechanism similar to automake that allows users to specify the location of external libraries and their headers using
, and .with-LIBRARY with-LIBRARY-lib with-LIBRARY-include

There is also an option to specify GLAST_EXT style directory layout by specifying the command line option . Any of the libraries found with-GLAST-EXT
in the GLAST_EXT style layout can still be overridden with the options.with-LIBRARY[-lib | -include]

The code that provides the above functionality is located in . It is responsible for locating the third party libraries and adding externals.scons
appropriate -L options to the compile environment. It also adds to the compile environment a list of libraries that should be linked against when a certain
third party library is required.

Variant Builds

To allow for building the same code with different compile options, I have enabled SCons variant builds. What this means is that when a compile is
performed, SCons will create a "virtual" copy of the code in a subdirectory. It will perform all builds in that directory. The directory name that is used can be
modified by specifying the option at the command line. If this option is not specified, SCons will determine the the OS it is running on and use variant=
that as the variant name. Additionally, it will determine if debug and/or optimized is enabled. If that is the case, it will add a and/or to -debug -optimized
the variant name. Once the variant name is determined, builds are performed in . Once compiled in there, the [packageName]/build/[variant]
libraries and other platform dependent data is installed in subdirectories that contain this variant name. For example if a build is done without specifying the

 option on a Linux OS then the astro package would be built in . Once everything is compiled, the libraries would be variant= astro/build/Linux
installed in , and the binaries would be in . Header files, on the other hand, would be located in .lib/Linux/ bin/Linux include/

Overriding packages

There are two ways two override packages. The first method you are doing a full build in your own environment with multiple versions of the same
package. In the second method you are building only a few packages (again with potentially multiple versions) against an already built build version of the
application.

Doing a full build with multiple versions of the packages.
With this method there's nothing "special" you need to do. As long as your packages have the format packageName-distinctionString, then SCons
will pick up only one version of this package. For example let's say you wish to compile ST-v8r2 with multiple versions of astro. You would check
out ST-v8r2 as before which will check out the standard version of astro. Now you wish to compile a different version of astro. You simply check
out the version of astro into a directory with slightly modified name that follows the convention above. For example you check it out as astro-1.
When SCons sees this package it automatically knows that it's a different version of astro and compiles astro-1 instead of astro. If you have
multiple several versions (for example astro, astro-1, astro-2,etc.), then SCons will pick the last one in lexical order (in this case astro-2).
Building a partial set of packages against a full build
In this case you run SCons with the argument override=somePath where somePath is the to the override directory. For example let's full path
say the full build is located in /ST-v8r2 and you have overridden astro in ~/ST-v8r2-override then, , you execute scons while located in /ST-v8r2
with-GLAST-EXT=/path/to/glast-ext override=~/ST-v8r2-override. This will build the new astro in ~/ST-v8r2-override against other libraries located
in /ST-v8r2. Of course ~/ST-v8r2-override can contain multiple packages including multiple versions of the same package. In the latter case the
same rules as the previous option apply.
In the likely event you don't wish to be located in /ST-v8r2 when compiling the override packages you can also do this build by adding an
additional argument to scons. This argument is -C /ST-v8r2. This will tell SCons to change dir to /ST-v8r2 before executing and return back to
your current dir after execution.

Gory Details of the SConstruct file

The SConstruct filfe begins by setting up some global variables. It then goes on and sets up the basic compile environment used by all packages to
compile code.

import os,platform,SCons,glob,re
platform = platform.system()
prefix = '/usr/local/bin'
override = '.'
#########################
Global Environment
#########################
baseEnv=Environment()
if ARGUMENTS.get('debug',0):
 baseEnv.Append(CCFLAGS = "-g")
 platform+="-Debug"
if ARGUMENTS.get('optimized',0):
 baseEnv.Append(CCFLAGS = "-O2")
 platform+="-Optimized"
if ARGUMENTS.get('CC',0):
 baseEnv.Replace(CC = ARGUMENTS.get('CC'))
if ARGUMENTS.get('CXX',0):
 baseEnv.Replace(CXX = ARGUMENTS.get('CXX'))
if ARGUMENTS.get('CCFLAGS',0):
 baseEnv.Append(CCFLAGS = ARGUMENTS.get('CCFLAGS'))
if ARGUMENTS.get('CXXFLAGS',0):
 baseEnv.Append(CXXFLAGS = ARGUMENTS.get('CXXFLAGS'))
if ARGUMENTS.get('variant',0):
 platform = ARGUMENTS.get('Variant')
if ARGUMENTS.get('prefix',0):
 prefix=ARGUMENTS.get('prefix')
if ARGUMENTS.get('override',0):
 override=ARGUMENTS.get('override')
 SConsignFile(os.path.join(override,'.sconsign.dblite'))

It then continues on to set up some help strings that will be displayed by SCons to the user when requesting help on compiling.

helpString = """
Usage:
 scons [target] [compile options]
Targets:
 Default: Build release binaries and libraries
 test: Build test binaries and required libraries
 binaries: Build release binaries and required libraries
 libraries: Build all libraries
 install: Install release binaries, includes, and libraries
 isntall-test: Install test binaries

Compile Options:
 optimized: Set to 1 to compile with optimization. Default 0.
 debug: Set to 1 to compile with debug. Default 0.
 CC: Set to the compiler to use for C source code.
 CXX: Set to the compiler to use for C++ source code.
 CCFLAGS: Set to additional flags passed to the C compiler.
 CXXFLAGS: Set to additional flags passed to the C++ compiler.
 variant: Compile binaries into subdirectory pointed by this varia$
 override: Directory where overridden packages are located. Relativ$
"""
Export('baseEnv')

After that, the project environment is updated to include the location where libraries/binaries/includes/etc. will be both after compiling and later when asked
to officially install the code into its final location (aka make install):

#########################
Project Environment
#########################
baseEnv.Append(LIBDIR = os.path.join(os.path.abspath(override),'lib',platform))
baseEnv.Append(BINDIR = os.path.join(os.path.abspath(override),'bin',platform))
baseEnv.Append(INCDIR = os.path.join(os.path.abspath(override),'include'))
baseEnv.Append(PFILESDIR = os.path.join(os.path.abspath(override),'pfiles'))
baseEnv.Append(TESTDIR = baseEnv['BINDIR'])
baseEnv.Append(INSTBIN = os.path.join(prefix,'bin',platform))
baseEnv.Append(INSTLIB = os.path.join(prefix,'lib',platform))
baseEnv.Append(INSTINC = os.path.join(prefix,'include'))
baseEnv.Append(INSTPFILES = os.path.join(prefix,'pfiles'))
baseEnv.Append(INSTTEST = baseEnv['TESTDIR'])
baseEnv.Append(CPPPATH = ['.'])
baseEnv.Append(CPPPATH = ['src'])
baseEnv.Append(CPPPATH = [baseEnv['INCDIR']])
baseEnv.Append(LIBPATH = [baseEnv['LIBDIR']])
baseEnv.AppendUnique(CPPPATH = os.path.join(os.path.abspath('.'),'include'))
baseEnv.AppendUnique(LIBPATH = os.path.join(os.path.abspath('.'),'lib',platform))

Next, it sets up the external libraries and adds the external libraries command line options to the help string displayed to users and register that help string
with SCons.

#########################
External Libraries
#########################
helpString += SConscript('externals.scons')

helpString += """
Install Options:
 prefix: Location to install files ($PREFIX/bin, $PREFIX/include, etc.). Default: /usr/local
"""

Help(helpString)

The SConstruct file then defines a function responsible for listing files in the "virtual" directory for the variant build.

def listFiles(files):
 allFiles = []
 for file in files:
 if file.find('*') == -1:
 allFiles.append(file)
 else:
 newFiles = glob.glob(os.path.join(str(Dir('.').srcnode()),file))
 for newFile in newFiles:
 newFile = str(Dir('.').srcnode().rel_path(File(newFile)))
 allFiles.append(newFile)
 return allFiles

Export('listFiles')

A check is then performed to see if the target being performed is the install target. If that's the case, additional files are registered to be installed

if 'install' in COMMAND_LINE_TARGETS:
 baseEnv.NoClean(baseEnv.Default(baseEnv.Alias('install',
 baseEnv.Install(prefix, 'SConstruct'))))
 baseEnv.NoClean(baseEnv.Default(baseEnv.Alias('install',
 baseEnv.Install(prefix, 'externals.scons'))))
 baseEnv.NoClean(baseEnv.Default(baseEnv.Alias('install',
 baseEnv.Install(os.path.join(prefix, 'site_scons', 'site_tools'),
 os.path.join('site_scons','site_tools', 'registerObjects.py')))))
 baseEnv.NoClean(baseEnv.Default(baseEnv.Alias('install',
 baseEnv.Install(os.path.join(prefix, 'site_scons', 'site_tools'),
 os.path.join('site_scons','site_tools', 'addLibrary.py')))))
 baseEnv.NoClean(baseEnv.Default(baseEnv.Alias('install',
 baseEnv.Install(os.path.join(prefix,'bin',platform),
 glob.glob(os.path.join(baseEnv['BINDIR'],'*'))))))
 baseEnv.NoClean(baseEnv.Default(baseEnv.Alias('install',
 baseEnv.Install(os.path.join(prefix,'lib',platform),
 glob.glob(os.path.join(baseEnv['LIBDIR'],'*'))))))
 baseEnv.NoClean(baseEnv.Default(baseEnv.Alias('install',
 baseEnv.Install(os.path.join(prefix,'include'),
 glob.glob(os.path.join(baseEnv['INCDIR'], '*'))))))
 baseEnv.NoClean(baseEnv.Default(baseEnv.Alias('install',
 baseEnv.Install(os.path.join(prefix,'pfiles'),
 glob.glob(os.path.join(baseEnv['PFILESDIR'], '*'))))))

Towards the end, a the SConstruct file attempts to locate all SConscript files and all tools. It regsiteres all the tools with SCons and stores the location of
the SConscript files in a list. Additional logic checks to see if a package is listed twice. If that's the case the package that is lexically last is only added. The
other versions of the package are ignored.

directories = [override]
packages = []
Add packages to package list and add packages to tool path if they have one
while len(directories)>0:
 directory = directories.pop(0)
 listed = os.listdir(directory)
 listed.sort()
 pruned = []
 #Remove duplicate packages
 while len(listed)>0:
 curDir = listed.pop(0)
 package = re.compile('-.*$').sub('', curDir)
 while len(listed)>0 and re.match(package+'-.*', listed[0]):
 curDir = listed.pop(0)
 pruned.append(curDir)
 #Check if they contain SConscript and tools
 for name in pruned:
 package = re.compile('-.*$').sub('',name)
 if name != 'build':
 fullpath = os.path.join(directory,name)
 if os.path.isdir(fullpath):
 directories.append(fullpath)
 if os.path.isfile(os.path.join(fullpath,"SConscript")):
 packages.append(fullpath)
 if os.path.isfile(os.path.join(fullpath, package+'Lib.py')):
 SCons.Tool.DefaultToolpath.append(os.path.abspath(fullpath))
 if 'install' in COMMAND_LINE_TARGETS:
 baseEnv.NoClean(baseEnv.Default(baseEnv.Alias('install',
 baseEnv.Install(os.path.join(prefix,'site_scons','site_tools'),
 os.path.join(fullpath,package+'Lib.py')))))

Finally, if the target being build is not the install target, SCons is told to load all SConscript files one at a time and control is handed over to SCons to start
the build process.

if 'install' not in COMMAND_LINE_TARGETS:
 for pkg in packages:
 baseEnv.SConscript(os.path.join(pkg,"SConscript"),
 build_dir = os.path.join(pkg, 'build', platform))

An Example SConscript File

This is an example of the structure of a SConscript file. This example is from the fitsGen package. First some variables and objects are imported into the
SConscript file. The command is a python command while the command is an SCons command importing variables exported import Import()
previously by an command.Export()

import glob,os,platform

Import('baseEnv')
Import('listFiles')

Next the basic environment is cloned for local use

progEnv = baseEnv.Clone()
libEnv = baseEnv.Clone()

Optionally, if there are changes that need to be made to the environment the can be done. In this case a CPP define is added to the compile command if
the OS is a Linux system

if platform.system() == 'Linux':
 progEnv.Append(CPPDEFINES = 'TRAP_FPE')

Now, a static library with the name is created that consists of the files in .fitsGen src/*.cxx

fitsGenLib = libEnv.StaticLibrary('fitsGen', listFiles(['src/*.cxx']))

After telling SCons to create a library, we specify that environment should add the fitsGen library to be linked in when linking the applications. All progEnv
libraries the fitsGen library depends on are included as well.

progEnv.Tool('fitsGenLib')
makeFT1Bin = progEnv.Program('makeFT1', 'src/makeFT1/makeFT1.cxx')
makeFT2Bin = progEnv.Program('makeFT2', 'src/makeFT2/makeFT2.cxx')
makeFT2aBin = progEnv.Program('makeFT2a', 'src/makeFT2a/makeFT2a.cxx')
egret2FT1Bin = progEnv.Program('egret2FT1', listFiles(['src/egret2FT1/*.cxx']))
convertFT1Bin = progEnv.Program('convertFT1', 'src/convertFT1/convertFT1.cxx')
partitionBin = progEnv.Program('partition', 'src/partition/partition.cxx')
irfTupleBin = progEnv.Program('irfTuple', listFiles(['src/irfTuple/*.cxx']))

Finally, we register all these objects so that they can be assigned to the correct targets to be built and that their final locations are computed.

progEnv.Tool('registerObjects', package = 'fitsGen', libraries = [fitsGenLib],
 binaries = [makeFT1Bin, makeFT2Bin, makeFT2aBin, egret2FT1Bin,
 convertFT1Bin, partitionBin, irfTupleBin],
 includes = listFiles(['fitsGen/*.h']),
 pfiles = listFiles(['pfiles/*.par']))

Dependency Computation

It is important that the environment is cloned before changes are made to it. If that is not done, any changes will propagate to all other packages.

The library is created in the environment. This is because the environment adds additional link commands to linker that are libEnv progEnv
not needed for a library and will in fact cause circular dependency if specified.

This time we use the progEnv environment so that the previous environment does not link against fitsGen and its dependencies

SCons uses something called tools. Tools are nothing more than python functions that modify the compile environment. This feature was recommended by
SCons developers to use for calculating dependencies recursively. To this this a package creates a file that is . This file contains [packageName]Lib.py
two functions and . The function does the actual modifications of the environment while the function is to generate() exists() generate() exists()
give an option to disable the tool under certain conditions. Here's an example from the Likelihood package.

The LikelihoodLib.py file first defines the function. This function uses the addLibrary tool to add its own libraries to the link command. It then generate()
calls the tool for other packages it depends on. It also calls the tool to register external libraries it depends on.directly addLibrary

def generate(env, **kw):
 env.Tool('addLibrary', library=['Likelihood'], package = 'Likelihood')
 env.Tool('astroLib')
 env.Tool('xmlBaseLib')
 env.Tool('tipLib')
 env.Tool('evtbinLib')
 env.Tool('map_toolsLib')
 env.Tool('optimizersLib')
 env.Tool('irfLoaderLib')
 env.Tool('st_facilitiesLib')
 env.Tool('dataSubselectorLib')
 env.Tool('hoopsLib')
 env.Tool('st_appLib')
 env.Tool('st_graphLib')
 env.Tool('addLibrary', library=env['cfitsioLibs'])
 env.Tool('addLibrary', library=env['fftwLibs'])

Finally, the function is created which does nothing more than return a true value to notify SCons that this tool is enabled.exists()

def exists(env):
 return 1

Interesting Python and SCons filesystem manipulation routines

os.path.join joins 'src' and '*.cxx' together in the correct way ie \ for windows and / for linux
glob.glob then takes the src/*.cxx and gets a list of files that match that pattern
I have added a listFiles() function that'll list the files in the "virtual" environment that SCons creates.

Environment variables

Our use of environment variables set by CMT needs to be removed. All use of [PACKAGENAME]ROOT environment variables is being removed in favor
of using commonUtilities functions such as getDataPath(). Some other variables are, however, being used in parts of the code. These need to be
addressed separately.

Name Status Solution Used In

CALDB Needed Set at runtime using commonUtilities::setEnvironment() irfs/caldb, irfs/dc1Response, irfs/dc1aResponse, irfs
/irfUtil

CALDBCONFIG Needed Set at runtime using commonUtilities::setEnvironment() irfs/caldb, irfs/irfUtil

CALDBALIAS Needed Set at runtime using commonUtilities::setEnvironment() irfs/caldb

PULSAROUTFILES Not
Needed

Obtain log directory using commonUtilities::getLogPath() celestialSources/Pulsar

SKYMODEL_DIR Not
Needed

Remove use of this variable celestialSources/Pulsar, Gleam

PULSARDATA Not
Needed

Use getDataPath("Pulsar") instead celestialSources/Pulsar, Gleam

BYPASS_ACCUMULATOR Unknown Likelihood

USE_OLD_LOGLIKE Unknown Likelihood

HANDOFF_IRF_NAME Unknown irfs/handoff_response

INTERPOLATE_EDISP Unknown irfs/handoff_response

CALIB_DIR Unknown irfs/irfLoader

OPTIMIZERSROOT Unknown Leave as is. It's written out to an xml file optimizers

It is important that only libraries that are needed for the library being added are listed here. For example liblikelihood.[so|a] directly depends on
astro lib. The astro library should therefore be called. Likelihood test applications might also depend on cppunit external library but they should n

 be listed here since they are not needed for linking against liblikelihood.[so|a].ot

TIMING_DIR Unknwon Replace with EXTFILESSYS timeSystem

EXTFILESSYS Needed Set at runtime using setupEnvironment() various packages

MERIT_INPUT_FILE Unknown Unknown GlastClassify, merit

MERIT_OUTPUT_FILE Unknown Unknown GlastClassify, merit

CTREE_PATH Unknown Unknown GlastClassify

PRUNEROWS Unknown Unknown GlastClassify

Fred_DIR Not
Needed

Use $GLAST_EXT/Fred/<version> Gleam

SKYMODEL_DIR Unknown Unknown Gleam

POINTING_HISTORY_FIL
E

Unknown Unknown Gleam

MOOT_ARCHIVE Unknown Unknown MootSvc, configData

OBFXFCBINDIR Unknown Unknown OnboardFilter

OBFXFC_DBBINDIR Unknown Unknown OnboardFilter

OBFEFCBINDIR Unknown Unknown OnboardFilter

OBFGFC_DBBINDIR Unknown Unknown OnboardFilter

OBFCPP_DBBINDIR Unknown Unknown OnboardFilter

OBFCPG_DBBINDIR Unknown Unknown OnboardFilter

OBFGGF_DBBINDIR Unknown Unknown OnboardFilter

MYSQL_METATABLE Unknown Unknown calibUtil

MYSQL_HOST Unknown Unknown calibUtil

USER Unknown Unknown calibUtil, rdbModel

TESTJOBOPTIONS Unknown Unknown gr_app

GLEAM_CHDIR Unknown Unknown gr_app

JOBOPTIONS Unknown Unknown gr_app

stdout Unknown Unknown gui

CTREE_PATH Unknown Unknown merit

MOOT_ARCHIVE Unknown Unknown mootCore

USERNAME Unknown Unknown rdbModel

mycalibs Unknown Unknown rdbModel

	SCons A Demo Implementation using SciTools

