
Running valgrind on linux

Set up a working area on linux

I set up an area in my Glast Users area. For example

 $USHERNFS/MemLeak 

where USHERNFS is /nfs/slac/g/glast/users/glground/usher

Use this space to store the top level job options file for controlling the job (I still rely on the basicOptions file as much as possible)

Setting up the environment

Set CMTPATH. Here it is convenient to point to one of the builds already done for us by the Release Manager. You can find the specific paths on 
the . Pick one of the builds and you will see the path to it on the resulting page. Set the CMTPATH:Release Manager page 
in csh:

setenv CMTPATH /nfs/farm/g/glast/u09/builds/rh9_gcc32/GlastRelease/GlastRelease-HEAD1.420

in bash:

CMTPATH=/nfs/farm/g/glast/u09/builds/rh9_gcc32/GlastRelease/GlastRelease-HEAD1.420; export CMTPATH

Setup the Gleam environment. Batch jobs inherit the environment of the submitting process. So, "source" the setup file (note that you will need to 
check the Gleam version number to do this):
in csh:

source $CMTPATH/Gleam/(gleam version)/cmt/setup.csh

in bash:

source $\{CMTPATH}/Gleam/(gleam version)/cmt/setup.sh

Setup the top level job options environment variable to point to your top level job options file. For example:
in csh:

setenv JOBOPTIONS $USHERNFS/RealData/readdigi_runrecon.txt

in bash:

JOBOPTIONS=$\{USHERNFS}/RealData/readdigi_runrecon.txt; export JOBOPTIONS;

Make sure you can run Gleam:

$CMTPATH/Gleam/(gleam version)/rh9_gcc32/Gleam.exe 

Looking for memory leaks

To run valgrind

valgrind -v --leak-check=yes --show-reachable=yes --logfile=log $CMTPATH/Gleam/(gleam version)/rh9_gcc32
/Gleam.exe 

References

Valgrind web page is here

https://www.slac.stanford.edu/www-glast-dev/cgi/detailedSummary?sessionId=&copackage=GlastRelease
http://valgrind.kde.org/


TkrGroup

https://confluence.slac.stanford.edu/display/TKR/TkrGroup

	Running valgrind on linux

