
DFT on GPUs
Long Term Goals

think about what the field will need "8 years from now" and what scientists want:
energies, derivatives of energies (most important)
density of states

dirac-kohn-sham
all-electron with ability to "understandably" switch to PAW
ability to handle degenerate states
use multigrid for eigensolver (O(N^2)) so we do less orthogonalization (O(N^3)). do orthogonalization on the coarse grid, and don't lose it moving 
to finer grids. (mid-90's codes avoided this)
multi-GPU
ability to scale out errors (like early GPAW). limited eventually by machine accuracy. e.g. romberg integration
real-space
gpu data exchange with GPU-Direct (within node and over IB ... no data exchange through MPI)
avoid orthogonalization, use multi-grid instead
adaptive grid (treated locally, only interacts with valence electrons)
periodic boundary conditions
find some small but interesting problems "along the way"

Goals for "May"

port matlab code to GPU
demonstrate GPU speed for simple H solid
start looking for interesting problems, e.g.

how to avoid orthogonalization and handle degenerate states
how to extrapolate out errors
GPU efficiency

real space
periodic boundary conditions
1 GPU
kohn-sham (dirac-kohn-sham too much work, but keep in mind)
adaptive grid, all electron
multigrid approaches, eigenvalue solver
understand todd approach better?
make more modular
don't build hamiltonian like gpaw to save memory?


	DFT on GPUs

