Thermal Blanket # Status May 9, 2006 Joanne has updated xmlGeoDbs to include new volumes for the updated blanket including the crown. Heather updated materials.xml to include the element Boron and to modify the blanket description according to the details that are described further down on this page. The final design document for the MMS reports: "The measured mass of the ACD MMS/MLI is 39.455 kg." Using detCheck v1r5 and its summary.exe application, we find that the blanket material results in: blanket: #Log = 5 #Phys = 7 Total volume = 302152 cu cm Mass = 37769 gm Seems fairly close. Joanne ran the test application in detCheck which checks for overlaps - none were found. Ran constsDoc.exe in detCheck and produced this HTML page. In particular we can take a look at the Blanket constants: | NADBlanketTopThick | 30.22 mm | Blanket thickness as of May, 2006. See https://confluence.slac.stanford.edu/display/ACD/Thermal+Blanket | | | | | |---------------------|--------------|--|--|--|--|--| | NADBlanketSideThick | 30.8 mm | lanket thickness as of May, 2006. See https://confluence.slac.stanford.edu/display/ACD/Thermal+Blanket | | | | | | NADCrownToTile | 2.26 mm | Distance from top of side tile to bottom of crown of blanket (room temperature). May, 2006. | | | | | | NADBlanketToTopTile | 6.89 mm | Distance from top tile to bottom of blanket. May, 2006 | | | | | | NADCrownWidth | 101.6 mm | Transverse distance across crown. May, 2006 | | | | | | NADCrownDepth | 31.75 mm | Z-distance from top of crown to top of lower, central part of blanket. May, 2006 | | | | | | NADBlanketTopTrans | 1790.7
mm | Max transverse distance across top blanket, from outside of crown. From as-build document ACD-RPT-000394 RevA | | | | | | NADBlanketSideZ | 918 mm | Z-dimension of blanket sides, from https://confluence.slac.stanford.edu/display/ACD/Thermal+Blanket, May, 2006 | | | | | NADBlanketTopThick 30.22 mm is determined below in the section "Final Design" NADBlanketSideThick 30.8 mm is determined below in the section "Final Design" NADCrownToTile 2.26 mm is determined below in the section: "Distance between MMS/MLI and ACD Tiles" NADBlanketToTopTile 6.89 mm is determined below in the section: "Distance between MMS/MLI and ACD Tiles" NADCrownWidth from the Final Design Document is 4.0" converted to mm is 101.6 mm NADCrownDepth is 1.25" converted to mm is 31.75 mm NADBlanketTopTrans is obtained directly from the Final Design Document diagram NADBlanketSideZ is obtained directly from the Final Design Document 918 mm # Blanket Model since the AO Currently the top of the thermal blanket is modeled as 32.7 mm thick. All dimensions are available from the RM, for example GR v9r1 https://www.slac.stanford.edu/www-glast-dev/cgi/xmlParams?sessionId=1470ea98f085564ae73de7ac067b43fa&cpId=6219#NADDimPrim From which we see that the top is 1756.34 mm x 1756.34 mm x 32.7 mm ## Constants for the sides: | NADBlanketSideY_I | 1756.34
mm | length in long (X) dimension of Y-sides of blanket | |-------------------|---------------|--| | NADBlanketSideX_I | 1690.94
mm | length in long (Y) dimension of X-sides of blanket, shorter than Y-sides because Y-sides cover corners | | NADBlanketSideZ | 1075.11
mm | height of a side piece of the blanket: approx. height of ACD side tiles + height of cal | The current material definition is: ``` <composite name="blanket" density = "0.081"> <addmaterial material="Aluminum"> <fractionmass fraction="27" /> </addmaterial> <addmaterial material ="Silicon"> <fractionmass fraction="144" /> </addmaterial> <addmaterial material ="Oxygen"> <fractionmass fraction="70" /> </addmaterial> <addmaterial material ="Carbon"> <fractionmass fraction="530" /> </addmaterial> <addmaterial material ="Hydrogen"> <fractionmass fraction="26" /> </addmaterial> </composite> ``` # Distance between MMS/MLI and ACD Tiles Please refer to Figure 3 of this documentPlease note that while this document contains some dimensions, these were not finalized and as such, where possible we use the dimensions provided in the Final Design Document (linked in the next section) which was release in January 2006. Currently in the simulation we model the blanket as simple boxes on the top and four sides without the crown. It may be time to modify that. But for the time being we will provide number both for this simplified blanket model and something closer to reality that includes the crown. Using a conversion factor of 2.54 to get cm from inches. #### Simplified version (without crown): Distance from bottom of MMS and top of top ACD tiles: **32.26 mm** Distance from bottom of MMS and top of side ACD tiles: **2.26 mm** Distance between MMS and start of side ACD tiles: **18.03 mm** #### With Crown: Distance from bottom of MMS and top of top ACD tiles: **6.89 mm**Distance from bottom of MMS and top of side ACD tiles: **2.26 mm**Distance between MMS and start of side ACD tiles: **18.03 mm** Note that the big difference is the distance between the top of the ACD tiles and the bottom of blanket, due to the need in the simplified model to have one box represent the blanket along the top, which must also clear the crown of the tiles themselves. # Final Design Here is a link to the final design document. The blanket is constructed of mulitple layers of material: **Kevlar** C21H15N3O3 56 cm radiation length 6 layers on the top, 8 layers on the sides Nextel Al2O3 (62.5%) SiO2 (24.5%) B2O3 (13%) 42 cm radiation length 4 layers Solomide Foam density = 0.005 g/cm3 No chemical formula is provided Material properties 0.0036 g/cm2 0.65 cm thickness/layer (density 0.0055 g/cm3) according to the final design document, Composition similar to that of Kapton. Equivalent thickness of Kapton determined by scaling by the density = 0.010 cm Radiation length of Kapton 28.2 cm MLI&Handling Layers density = 1.4 g/cm3 Thickness 0.07 cm total of all materials Area density 0.098 g/cm2 Radiation length 28.2 cm From the description sounds like mostly Kapton (C22H10N2O5) The only other material explicitly mentioned is Germanium, but after consulting with Dave Thompson (GSFC) it was decided that could be ignored..it only contributes 1000 Angstroms, or 0.00001 cm. ### Top Dimensions: 1798 mm x 1798 mm Crown dimensions: width: 4.0 inches = 101.50 mm depth: 1.25 inches = 31.75 mm The top has surface area of $32328 \text{ cm2} = (179.8 \times 179.8)$ neglecting the inside of the crown The inside of the crown provides an additional $2022 \text{ cm2} = (158.0 \times 3.2) \text{ 4}$ The thickness of the top can be computed as: MLI&Handling Layers: 0.07 cm Solomide Foam: 4(0.65 cm) Nextel: 4(0.043 cm) Kevlar: 6(0.03 cm) Total Thickness: 30.22 mm From Section 7 of the Final Design Document: Top (6 layers Kevlar): 0.137 + 0.119 + 0.015 + 0.098 = 0.36 g/cm2 Top $0.36 \text{ g/cm2} \times 34350 \text{ cm2} = 12366 \text{ g}$ Top ignoring crown 0.36 g/cm2 x 32328 cm = 11638.08 g Density: 0.36 g/cm2 / 3.02cm = 0.12 g/cm3 ## Determining how to model the material ``` Solomide Foam (modeled as Kapton): 32328 cm2 (2.6 cm) (0.0055 g/cm3) = 462.29 g C22H10N2O5 1 mole = 22(12.011) + 10(1.0079) + 2(14.0067) + 5(15.9994) = 382.33 g 462.29 g / 382.33 g = 1.21 moles 22(12.011)(1.21) = 319.73 C 10(1.0079)(1.21) = 12.20 H 2(14.0067)(1.21) = 33.90 \text{ N} 5(15.9994)(1.21) = 96.80 O Nextel: 32328 \text{ cm2} (4(0.043)) (0.69) = 3836.69 \text{ g} Al2O3 (62.5%) SiO2 (24.5%) B2O3 (13%) 3836.69 (0.625) = 2397.93 q 2(26.98154) + 3 (15.9994) = 101.96 g/mole 2397.93 / 101.96 = 23.52 moles 2(26.98154)(23.52) = 1269.21 g Al 3(15.9994)(23.52 = 1128.91 g O SiO2: 3836.69(0.245) = 939.99 g SiO2: 28.0855 + 2(15.9994) = 60.08 \text{ g/mole} 939.99/60.08 = 15.65 moles 28.0855(15.65) = 439.54 g 2(15.9994)(15.65) = 500.78 g O B2O3: 3836.69(0.13) = 498.77 g B2O3: 2(10.81) + 3(15.9994) = 69.62 g/mole 498.77/69.62 = 7.164 moles 2(10.81)(7.164) = 154.89 g B 3(15.9994)(7.164) = 343.86 g O Kevlar 32328 cm2 (6 (0.03 cm)) (0.76 \text{ g/cm3}) = 4422.47 \text{ g} C21H15N3O3 1 mole = 21(12.011) + 15 (1.0079) + 3 (14.0067) + 3 (15.9994) = 357.37 g 4422.47 g / 357.37 g = 12.38 moles 21(12.011)(12.38) = 3122.62 g C 15(1.0079)(12.38) = 187.17 g 3(14.0067)(12.38) = 520.21 g ``` ``` Kapton 32328 cm2 (0.07 cm) (1.4 g/cm3) = 3168.14 g C22H10N2O5 1 mole = 22(12.011) + 10(1.0079) + 2(14.0067) + 5(15.9994) = 382.33 g 3168.14 / 382.33 = 8.29 moles 22(12.011)(8.29) = 2190.57 g C 10(1.0079)(8.29) = 83.55 H 2(14.0067)(8.29) = 232.23 g N 5(15.9994)(8.29) = 663.18 g O ``` #### Total for each element 3(15.9994)(12.38) = 594.22 g | С | н | N | o | В | Al | Si | |-----------|----------|----------|-----------|----------|-----------|----------| | 319.73 | 12.20 | 520.21 | 594.22 | 154.89 | 1269.21 | 439.54 | | 3122.62 | 187.17 | 232.23 | 663.18 | | | | | 2190.57 | 83.55 | 33.90 | 1128.91 | | | | | | | | 343.86 | | | | | | | | 96.80 | | | | | | | | 500.78 | | | | | 5632.92 g | 282.92 g | 786.34 g | 3327.75 g | 154.89 g | 1269.21 g | 439.54 g | Total: 11893.57 g Mass Fractions: C: 5632.92/11893.57 = 0.474 H: 282.92/11893.57 = 0.024 N: 786.34/11893.57 = 0.066 O: 3327.75/11893.57 = 0.280 B: 154.89/11893.57 = 0.013 AI: 1269.21 / 11893.57 = 0.107 Si: 439.54 / 11893.57 = 0.037 ## Side Dimensions: 1798 mm x 918 mm Outer surface area: (179.8 cm x 91.8 cm) = 16505.64 cm2 MLI&Handling Layers: 0.07 cm Solomide Foam: 4(0.65 cm) Nextel: 4(0.043 cm) Kevlar: 8(0.03 cm) Total: 3.08 cm From Section 7 of the Final Design Document: Top (8 layers Kevlar): 0.182 + 0.119 + 0.015 + 0.098 = 0.41 g/cm2 Top $0.41 \text{ g/cm2} \times 16505.64 \text{ cm2} = 6767.31g$ Density: 0.41 g/cm2 / 3.08 cm =0.13 g/cm3 **Solomide Foam** (modeled as Kapton): 16505.64 cm2 (2.6 cm) (0.0055 g/cm3) = 236.03 g C22H10N2O5 1 mole = 22(12.011) + 10(1.0079) + 2(14.0067) + 5(15.9994) = 382.33 g 236.03 g / 382.33 g = 0.62 moles 22(12.011)(0.62) = 163.83 C 10(1.0079)(0.62) = 6.25 H 2(14.0067)(0.62) = 17.37 N 5(15.9994)(0.62) = 49.60 O **Nextel:** 16506 cm2 (4(0.043)) (0.69) = 1958.93 g Al2O3 (62.5%) SiO2 (24.5%) B2O3 (13%) 1958.93(0.625) = 1224.33 g 2(26.98154) + 3 (15.9994) = 101.96 g/mole 1958.93/ 101.96 = 19.21 moles 2(26.98154)(19.21) = 1036.63 g Al 3(15.9994)(19.21) = 922.05 g SiO2: 1958.93(0.245) = 479.94 g SiO2: 28.0855 + 2(15.9994) = 60.08 g/mole 479.94/60.08 = 7.99 moles 28.0855(7.99) = 224.40 g Si 2(15.9994)(7.99) = 255.67 g O B2O3: 1958.93(0.13) = 254.66 g B2O3: 2(10.81) + 3(15.9994) = 69.62 g/mole 254.66/69.62 = 3.66 moles 2(10.81)(3.66) = 79.13 g B 3(15.9994)(3.66) = 175.67 g O **Kevlar** 16506 cm2 (8 (0.03 cm)) (0.76 g/cm3) = 3010.69 g C21H15N3O3 1 mole = 21(12.011) + 15 (1.0079) + 3 (14.0067) + 3 (15.9994) = 357.37 g 3010.69 g / 357.37 g = 8.42 moles 21(12.011)(8.42) = 2123.79 g C 15(1.0079)(8.42) = 127.30 g H 15(1.0079)(8.42) = 127.30 g H 3(14.0067)(8.42) = 353.81 g N 3(15.9994)(8.42) = 404.14 g O **Kapton** 16506 cm2 (0.07 cm) (1.4 g/cm3) = 1617.59 g C22H10N2O5 1 mole = 22(12.011) + 10(1.0079) + 2(14.0067) + 5(15.9994) = 382.33 g 1617.59/ 382.33 = 4.23 moles 22(12.011)(4.23) = 1117.74 g C 10(1.0079)(4.23) = 42.63 g H 2(14.0067)(4.23) = 118.50 g N 5(15.9994)(4.23) = 338.39 g O #### Total for each element | С | н | N | O | В | AI | Si | |-------------|-------|--------|--------|-------|-------------|--------| | 1117.7
4 | 42.63 | 118.50 | 338.39 | 79.13 | 1036.6
3 | 224.40 | | 2123.7
9 | 127.30 | 353.81 | 404.14 | | | | |-------------|--------|--------|---------|-------|---------|--------| | 163.83 | 6.25 | 17.37 | 175.67 | | | | | | | | 255.67 | | | | | | | | 922.05 | | | | | | | | 49.60 | | | | | 3405.36 | 176.18 | 489.68 | 2145.52 | 79.13 | 1036.63 | 224.40 | Total: 7556.90 Mass Fractions: C: 0.451 H: 0.023 N: 0.065 O: 0.284 B: 0.010 Al: 0.137 Si: 0.030 </addmaterial> </composite> ## **Suggested Material Definition** The material for the top and sides of the blankets are "close enough" that it seems appropriate to use the same material for both. We'll use the mass fractions from the side computation <composite name="blanket" density = "0.125"> <addmaterial material="Aluminum"> <fractionmass fraction="0.137" /> </addmaterial> <addmaterial material ="Silicon"> <fractionmass fraction="0.030" /> </addmaterial> <addmaterial ="Oxygen"> <fractionmass fraction="0.284" /> </addmaterial> <addmaterial material ="Carbon"> <fractionmass fraction="0.451" /> </addmaterial> <addmaterial ="Hydrogen"> <fractionmass fraction="0.023" /> </addmaterial> <addmaterial material = "Nitrogen"> <fractionmass fraction="0.065"/> </addmaterial> <addmaterial material="Boron"> <fractionmass fraction="0.010"/>