
Start-up procedure

Initial instruction
Execution after reset starts at 0xfffffffc

A branch instruction (either or ; 26 bit range) to some boot code is loaded hereb ba
The Xilinx example branches to in block RAM () at bram 0xffffff00
The RTEMS example branches to (but I'm not sure how)download_entry

Potentially a (system call) instruction could be loaded here? Any advantage to this?sc
Probably not as the corresponding register (PPC 440) is not loaded yetivor
The PPC 405 doesn't have registers, so it would continue executing at the system call vectorivor

dlEntry.s ()download_entry()

This file is considered part of an RTEMS BSP and can be found in . What's ${RTEMS_ROOT}/src/c/src/lib/libbsp/powerpc/virtex5/dlentry
written here is written for the PPC 440 found in Xilinx Virtex 5 parts. The Virtex 4 version is similar.

In our case, the boot code starts at startup
Other names are , and start download_entry __rtems_entry_point

Boot code vaguely follows the "Initialization Software Requirements" outlined in the PowerPPC 440x5 Embedded Processor Core User's Manual
v7.1 from IBM

Why only "vaguely"?
Clear MSR
Disable debug events
Configure instruction and data cache registers
Set up decrementer and timer registers
Clear exception registers ECR and XER
Invalidate instruction and data caches
Clear the CPU reservation bit
Set up CCR0, CCR1, MMUCR, CRF and CTR
Set up TLB pages
Set up debug events
Set up EABI and SYSV environment
Clear out BSS section
Load vector offset register
Set up TOC (i.e.,)r2
Set up initial stack (i.e.,)r1
Set up argument registers r3, r4 and r5
Branch to boot_card()

boot_card()

While the RTEMS structure provides for allowing this function to be supplied by the RTEMS BSP, we use the version that the distribution comes with. It is
found in the directory called .${RTEMS_ROOT}/src/c/src/lib/libbsp/shared bootcard.c

In the following, functions prefixed with are supplied by the RTEMS BSP.bsp_

Command line is in the first and only argument
In our system this is always a null pointer

Disable interrupts
Store command line
Call bsp_start()
Determine RTEMS work area and heap location and size
Initialize RTEMS data structures
Initialize the C library

This also installs the heap
Call bsp_pretasking_hook()
[Enable RTEMS debugging capabilities]
RTEMS initialization before loading device drivers

Note that in this description, time advances down along the page.

Bear in mind as well that this description applies to the design.Gen 1

Items in square brackets ([]) are optional.

https://confluence.slac.stanford.edu/display/CCI/Documentation#Documentation-PowerPC405&440EmbeddedCores
https://confluence.slac.stanford.edu/display/CCI/Documentation#Documentation-PowerPC405&440EmbeddedCores

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Call bsp_predriver_hook()
Initialize device drivers
Call bsp_postdriver_hook()
Start multitasking

Before starting the first task .call any C++ static constructors
Thread with entry point runsInit
Not clear how this returns. Perhaps when the last task is deleted?

Call bsp_cleanup()
Return to the start code

Not clear what's in the at this point, i.e., where do we return to?lr

RTEMS BSP

This constitutes our contributions to RTEMS. The code here sets up the processor and board for use. Files related to it can be found in generic ${RTEMS_R
.OOT}/src/c/src/lib/libbsp/powerpc/virtex5/...

The functions prefixed with are supplied by the RTEMS , i.e., the RCE project, in our case.app_ application

bsp_start()
Set up default character output function
Get CPU type and revision cached
Initialize device driver parameters

Rate of timer source for clock.c
bsp_timer_internal_clock
bsp_timer_average_overhead
bsp_timer_least_valid

Initialize default raw exception handlers
Call app_bsp_start()
Return to boot_code()

bsp_pretasking_hook()
Call app_bsp_pretasking_hook()
Return to boot_code()

bsp_predriver_hook()
Call app_bsp_predriver_hook()
Return to boot_code()

bsp_postdriver_hook()
Call to open for , and , if it existsrtems_libio_supp_helper() /dev/console stdin stdout stderr
Call app_bsp_postdriver_hook()
Return to boot_code()

bsp_cleanup()
Call app_bsp_cleanup()
Return to boot_code()

RCE BSP

This is the portion of the BSP that is specific to the RCE project. It can be found in .release/rce/init/src/Init.cc

app_bsp_start()
This routine should set up the processor and board as needed for the task at hand, i.e., it is generic.not
Replace the character output function with one that writes to the syslog
Return to bsp_start()

app_bsp_pretasking_hook()
Initialize RceDebug
Initialize RcePic
Return to bsp_pretasking_hook()

app_bsp_predriver_hook()
Initialize RceEthernet
Initialize RceBsdnet
Return to bsp_predriver_hook()

app_bsp_postdriver_hook()
Return to bsp_postdriver_hook()

app_bsp_cleanup()
Return to bsp_cleanup()

RceDebug

Set up an RTEMS extension that creates and manages the syslog
Return to app_bsp_pretasking_hook()

RcePic

Set up a single PIC Manager
Set up a vector of PEBs
Set up a vector of ECDs
Set up a vector of FLBs
Set up a vector of PIBs

https://confluence.slac.stanford.edu/x/4gQBAw

Install a BOOK-E Critical exception handler
Install an External Interrupt handler

Return to app_bsp_pretasking_hook()

RceEthernet

Create a single empty linked list of Ethernet drivers
Return to app_bsp_predriver_hook()

RceBsdnet

Create a single empty linked list of Ethernet handlers
Return to app_bsp_predriver_hook()

Init task

This task is automatically launched by the act of enabling multitasking in boot_card()

Launch taskinit_executive()
Delete the taskInit

init_executive()

This function runs in its own RTEMS task that was launched by . This forms the of the loaded executable. Other possibilities exist, but taskInit intent
generally, this will be one of the executables.core

Announce what's running
Configure the network from DHCP
Set up the dynamic linker
[Start the shell]
[Start the debugger daemon (stub)]gdb
Create a Task
Determine what the should runTask

Read metadata from flash
Read the front panel rotary switch

Dynamically link the code
Run the Task

	Start-up procedure

