Some Driver and Device Support
Issues

T.S.

ISR vs. Task Driven

e ISR driven:
— does work 1n ISR

— many ported drivers are written this way

— 1nadequate for real-time OS
e Task driven

— ISR schedules a driver task
— task does all real work

— adequate for real-time OS

Rationale

e real-time OS must be deterministic, minimal
latencies

* any work in ISR adds to latencies

e driver shouldn't set policy (priority) but leave this
to application

e any ISR driven device can preempt a more

important task but no task can preempt ISR work
-> bad

e Jess resources available to ISR than task

Rationale (cont.)

* reassigning task priorities 1s simple

* reviewing and rewriting drivers 1s hard

ISR driven

* Typical driver ISR:

general driver _1sr()

{
[* clear _edge interrupt() here! */
do i o_and ot her work();
clear level interrupt();

}

* Note: Must clear edge-sensitive IRQ before servicing to prevent
lost interrupts (2" IRQ between service + clear)

* clear level-sensitive IRQ after servicing to avoid leaving pending

* details (pay attention; hard to debug!) depend on particular device

Task Driven

e tsk driven_ | SR()

{
mask I nterrupt _at device();
semaphore _rel ease();
}
e driver _task()
{
while (1) {

semaphor e_obt ai n() ;
generic_driver_isr();
unmask i nterrupt _at device();

Exceptions

* Only exception: work 1s so trivial that it doesn't
justify a task-context switch (< 1us).

EPICS Device Support

* Be aware that devsup read/write 'methods' are
executed from shared task contexts:

— scanners (scan Once, periodic scanners)

— 3 callback tasks (event, I/O 1ntr, all callback work)

* -> Anything you do, might delay other work.

What to Avoid

* blocking operations:

— epicsMutex
— epicsEventWait
— printf, read, write

* slow and non-deterministic operations

— malloc

— polled wait

What to Do

* asynchronous record processing

* create your own tasks (appropriate priority) to do
work

Other Considerations

* Never do implicit I/O (but use 1n_le32() etc.)
[more readable, guarantees in-order execution of

I/O]

* Always declare vol at 1| e:

- memory-mapped device registers

— global variables that can be changed from ISRs or
other tasks.

| guarantees in-order compilation |

Examples

e extern volatile int stop;

do_sonet hi ng()
{ /* "stop' Is set by other task */
while (!'stop)
out | e32(addr, val);

Examples

e extern volatile int stop;

do_sonet hi ng()
{ /* "stop' Is set by other task */
while (!'stop)
out | e32(addr, val);
}

e Without 'vol ati | €' the compiler may generate instead:

do_sonet hi ng()

{
1f (!'stop) {
while (1) out | e32(addr, val);
}

}

Example 2

e extern volatile Iint cnt;

do_count ()

{ unsigned Xx;
rtens_interrupt disabl e(x);
cnt ++;
rtens_interrupt enabl e(x);

Example 2

e extern volatile Iint cnt;

do_count ()

{ unsigned Xx;
rtens_interrupt disabl e(x);
cnt ++;
rtens_interrupt enabl e(x);

}

e Without' vol ati |l e' the compiler may generate:

do_count ()

{ unsigned Xx;
rtens_interrupt _disable(x);
rtens_I nterrupt enabl e(x);
cnt ++;

Summary

e Favor task driven approach to ISR when writing
drivers.

* Keep EPICS callback threads responsive. Let
devsup read/write methods use asynchronous
processing and your own threads.

* Pay attention to variables with side-effects.
Problem becomes more apparent with more
modern compilers and CPUs (optimizations
abandon sequential execution, faster execution).

