Study (preliminary) of GCR heavy-ion population throughout CAL

- Goal: estimate time needed for GLAST Calorimeter to calibrate on orbit using CR heavy-ions
- Method: run MC simulation with CrHeavylonPrimary source
- Good hits: heavy ion hits in CAL layers prior to interaction
- Study: Carbon ions (most abundant, processed relatively quickly)
- Software: GR v7r3p10 with customized userAlg, G4Generator, Event, and FluxSvc packages
- Run: at SLAC LSF; 70 batch jobs ($\sim 95,000$ events each)
- Statistics: Out of 6,650,000 CR particles $\sim 1,900,000$ are Carbon ions ~ 190,000 Carbon ions entered CAL sensitive volume (CsI)

Brief details

- Tracking: I traced the original heavy-ion's path through the CAL, using Geant4 "userAction" functions (TrackingAction, EventAction, and SteppingAction).
Tracking was done until primary heavy-ion gets involved in a nuclear interaction, defined by one of the following G4ProcessTypes:

IonInelastic, Hadronic, Photolepton_hadron, Decay;
or its propagation was ceased by Geant4

- Output: heavy-ion's energy loss in CsI, its pathlength in CsI, IDs of crystals that were hit, type of event (nuclear or non-nuclear), event number, original particle's type, energy, and time, as well as McIntegratingHit totalEnergy for crystals hit by heavy-ion. Energy loss per step is calculated as a difference in total energy of the particle between the beginning and the end of the step

Spectrum of incident CR Carbon ions

Carbon hits distribution throughout CAL

GLAST Calorimeter consists of 16 towers assembled in 4×4 array; each tower has 8 layers of 12 CsI crystals CAL has a total of 1536 CsI crystals

- To collect an average of 640 (a minimum of 320) Carbon hits/crystal it would require exposure time

$$
\Delta t \approx 42900 \mathrm{sec} \approx 12 \mathrm{hrs}
$$

- To collect minimum 1000 hits/crystal it would take $\Delta t \approx 36 \mathrm{hrs}$
- There is a factor of ~ 4 difference between the most populated and the least populated crystals

Differrent regions of CAL painted with different colors:

- Red - four central towers, Blue - four corner towers, Light green - eight other towers
- As expected from geometrical pathlength considerations the inner towers are least populated, conversely the corner towers are most populated

hhit0

- Approximately 60% of Carbon ions entering the CAL suffer nuclear interactions
- Four central towers have $\sim 20 \%$ of useful hits, four corner towers have $\sim 30 \%$ of useful hits, remaining 50\% fall on eight other towers

