Structural PFA: Status & Results

Mat Charles The University of Iowa

Overview

- Structural algorithm: Recap & code status
- Tools I use to assess the PFA
- Structural PFA performance
 - What works well
 - What needs improving

All plots: Z-pole events in sidaug05

Structural Algorithm: Recap

- Previously described at Snowmass
- · Hadronic clusters are composed of
 - (1) Track segments
 - (2) Dense clumps
 - (3) Halo
 - (4) Secondaries (neutral)
- Find these components and link them
 - Likelihood selector for (1) and (2)
 - -MST for (3)
 - Special fragment handling for (4)

Fragment Handling

• Two parts:

(1) Is this cluster a fragment?

(2) Which is the parent cluster of this fragment?

• Current simplistic implementation:

(1) Fragment ID:

- Not a fragment if there's an associated track. Else:
- Fragment if < 4 hits
- Fragment if 4-10 hits and DOCA to IP > 10 cm

(2) Fragment assignment:

• Merge with nearest (hit-hit) non-fragment cluster

Code Status & Locations

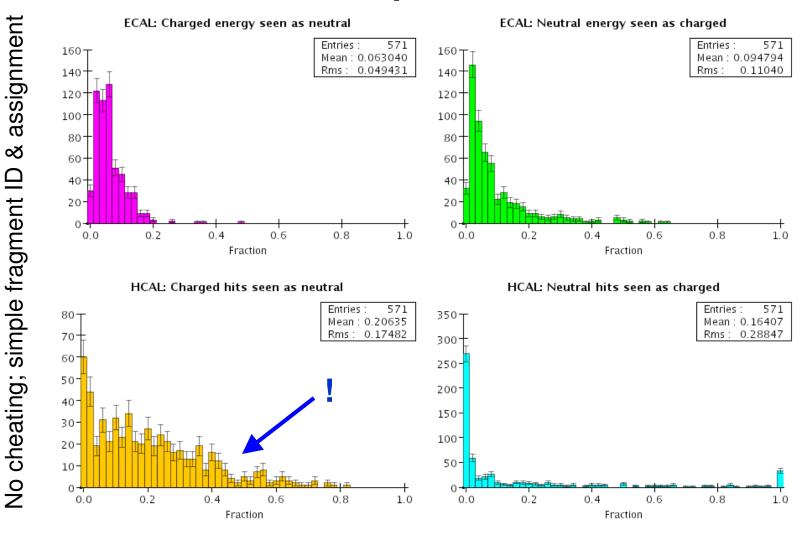
- Code is in CVS:
 - org.lcsim.recon.cluster.mipfinder
 - org.lcsim.recon.cluster.mst
 - contrib/uiowa/structural
- Package "structural" is the structural algorithm plus an example PFA that uses it
- First two are stable; hopefully finalize interface for structural package at this workshop

Tools for studying the PFA

- Many pieces in a PFA
- Need to find & improve the weak links
- Some tools I use:
 - Modular design
 - Cheating can be turned on & off in steps
 - Plots for individual steps (e.g. fragment ID)
 - Check amount of charged/neutral confusion
 - Simple toy MC (described shortly)

Some Modules

- FragmentIdentifier interface
 - SimpleFragmentIdentifier
 - CheatFragmentIdentifier
 - TestFragmentIdentifier
- FragmentMerger driver
 - CheatFragmentMerger extension
 - TestFragmentMerger extension
- EventEnergySum driver


Confusion

- Confusing charged and neutral energy degrades resolution.
- Three categories to describe the hits:
 (1) From a charged particle with a found track
 (2) From a charged particle without a track
 (3) From a neutral particle
- Measure how much of each type winds up in clusters with

(a) A matched track (safe for 1; wrong for 2,3)

(b) No matched track (safe for 2,3; wrong for 1)

Example results

A problem identified: charged energy in the HCAL seen as neutral

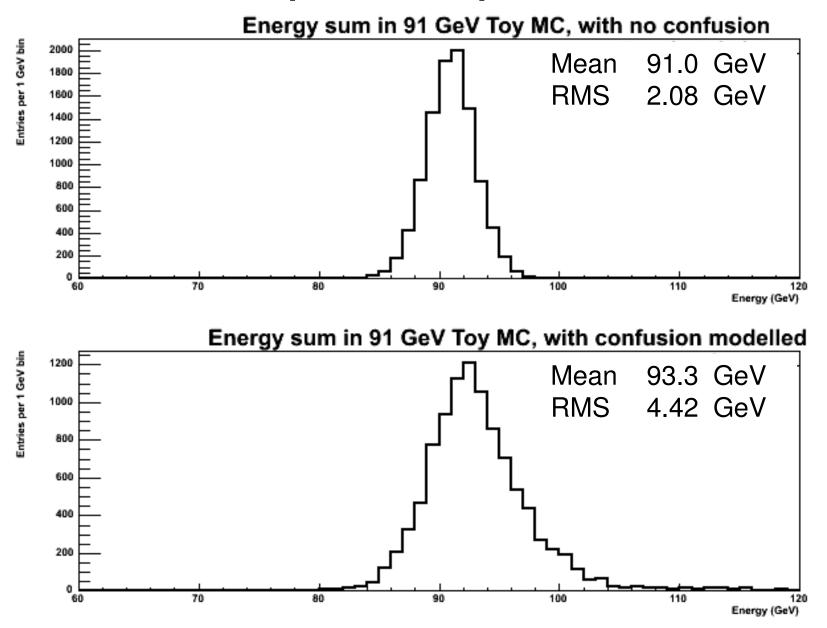
HCAL: Charged \rightarrow neutral energy

- We found a track at the ECAL surface
- HCAL hits in separate cluster (fragment)
- Possible issues:
 - (1) We mis-identified it as a primary neutral
 - (2) We identified it as a fragment but attached it to a wrong (neutral) cluster
 - (3) Should it have been part of the primary cluster in the first place?
 - (4) Track misassigned?

Fragment Performance

- Fragment ID:
 - 99% of fragments in ECAL correctly ID'd
 - 93% of fragments in HCAL correctly ID'd
 - 68% of primaries in ECAL correctly ID'd
 81% of primaries in HCAL correctly ID'd
- Fragment merging:
 - 42% of fragments in ECAL assigned to parent
 - 72% of fragments in HCAL assigned to parent

Merging problems? But not conclusive...


Building A Simple Toy MC

- Goal is to simplify the problem so I can study PFA performance quantitatively
- Relevant parts of resolution for clustering:
 (1) Confusion term
 (2) Fragment ID if calibration is non-linear
- Use confusion plots as input for (1)
- Ignore (2) for the moment

Building A Simple Toy MC

- Other inputs: amount and resolution for
 - -E/M neutrals (photons, pi0) [20%/ \sqrt{E}]
 - E/M charged (electrons)
 - Hadronic neutrals (K0, n, ...) [68%/ \sqrt{E}]
 - Hadronic charged (pi+, p, ... -- also muons)
- Total visible energy is fixed to 91.0 GeV
- ... and throw a lot of dice

Example Output Plots

Toy MC Results

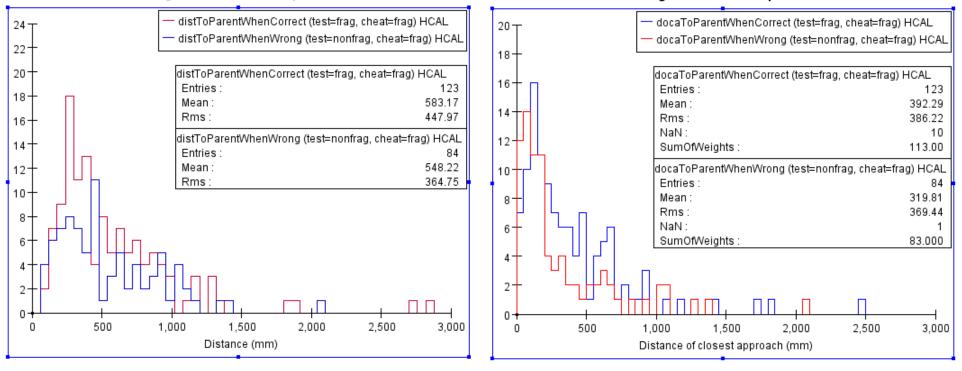
		Mean (GeV)	RMS (GeV)
	No confusion	91.0	2.04
-	Cheating on fragment ID and fragment assignment	91.5	2.36
-	Cheating on fragment ID but not fragment assignment	93.0	3.52
-	Not cheating at all	93.3	4.42

Not cheating on cluster core reconstruction, track matching etc. to get confusion PDFs Subtracting in quadrature: Bad ID: 2.6 GeV Bad merging: 2.7 GeV

Another Approach To Fragments

- Suggested by Ron...
- We identify fragments like before...
- ... but instead of trying to merge them with their parent, we drop them instead
- In effect, trade off hit efficiency for purity
- No need to do fragment assignment
- Preliminary and wrong study shows it might just about work IF we have really good fragment ID.

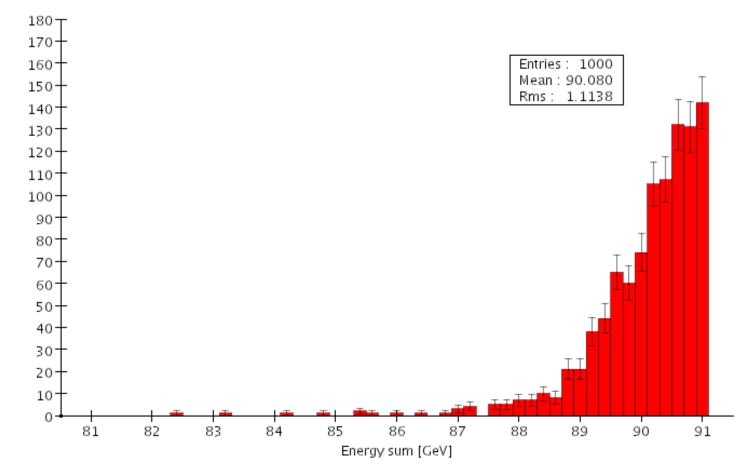
Conclusions & Thoughts


- Need better fragment handling!
 - I have a few ideas for ID
 - Merging seems to be a hard and nonscaleable problem...
 - Keen to try out other people's algorithms
- Does track-matching need improving?
- Make use of E/p?
- Are the resolutions from toy MC achievable in real life?
- Better modelling of fragment-dropping?

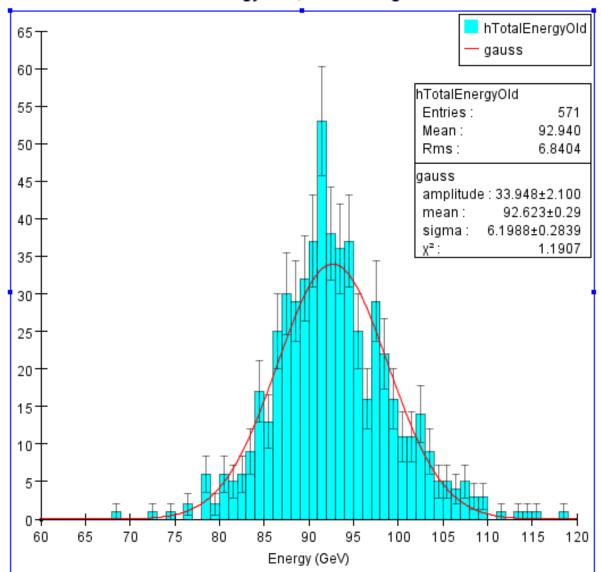
Backups

Fragment Merging in HCAL

Fragments: DOCA to parent


Fragments: distance to parent

Toy MC Inputs


Туре	Energy fraction	Resolution
Charged hadrons	0.659 ± 20% relative	0 (charged)
Neutral Hadrons	0.083 ± 50% relative	68% / sqrt(E)
Electrons	0.040 ± 30% relative	0 (charged)
Photons	0.218 ± 30% relative	20% / sqrt(E)

Example: Missing Energy

- Perfect PFA, counting everything that reaches the calorimeters
- Energy taken from truth (i.e. zero resolution)
- Neutrinos added in

Actual Energy Sum Plot

Energy sum, no cheating