Status of Particle Flow Software

Steve Magill

Argonne National Laboratory

PFA Status Tools Cluster-based PFAs Multiple-algorithm PFAs

Detector Comparisons with PFAs

- - **-** -

Summary

- -

Sim Wkshp, UCol 01/06

PFA Status : Progress since Snowmass Some Meetings :

Simulation : weekly Tuesday 1:30 PT phone/shared screen -> <u>http://confluence.slac.stanford.edu/display/ilc/LCDWeekly</u>

SiD Calorimetry : ~weekly Wednesday 2:00 PT phone/web agenda page -> <u>http://www.slac.stanford.edu/xorg/lcd/SiD-Cal/</u>

ANL-FNAL-NIU : bi-weekly focused on PFA development -> <u>http://docdb.fnal.gov/ILC-public/DocDB/DocumentDatabase</u>

ALCPG Calorimetry : scheduled as needed - next 12/19/05 -> <u>http://www.slac.stanford.edu/xorg/lcd/calorimeter/</u>

Linear Collider Simulation Workshops : next 1/9-11/06 U of Colorado, Boulder

-> <u>http://www-hep.colorado.edu/cuilc/sim-workshop.html</u>

Tools for PFA Development

Angular corrections in SiD - R. Cassell SLAC

Similar response for each neutral Energy independent ~ 16% effect at 45 degrees

Response should be related to additional path length through absorber

Plot response vs 1/sqrt(pathlength) = sqrt(sin theta)

Can determine response at 90 degrees and then correct for angle

-> Implemented for SiD

Tools for PFA Development

Package to compare cluster algorithms

Tools for PFA Development HCAL Studies - R. Cassell SLAC

For each detector model, remove all elements except the HCAL barrel, extend it to 1000 layers and 30m in Z. (keep the B field)
Uses scaled energy = max available -> combine K₀^L, n and nbar for study
Single particle studies can compare different detector designs
Useful for calibrating detectors?

(Emeas-E)neutral - sidaug05_np : isolated detector calibration

Calibrations applied to full detector simulation data give reasonable results

-> calibrations for SiD, CDC

Cluster-based PFAs

Cluster Association Algorithms - D. Chakraborty, G. Lima, V. Zutshi NIU

Ongoing Work on 2 different cluster algorithms - different applications?

- The Basic Algorithm
 - Density-weighted Clustering in Calorimeter
 - Calorimeter-only (no track-seeding)
 - Same for ECal (e, γ), and HCal (h+, h^o).
 - Replace cal clusters with matching (MC) tracks, if any.
- The Directed Tree Algorithm
 - Association of isolated "fragment"s or "satellite"s.

Using density-weighted clustering in PFA

DHCal: Particle-flow algorithm (NIU)

- Nominal SD geometry.
- Density-weighted clustering.
- Track momentum for charged,
- Calorimeter E for neutral particles.

for les.

 $\Sigma^+ \rightarrow p\pi^0$

Etper1

ts t) 11

6

ILCW05, Snowmass

PFA Development at NIU Dhiman Chakraborty

DHCal: Particle-flow algorithm (NIU) Reconstructed jet resolution

Using Directed Tree clustering

Single hadrons in the ECal

Clusters from single hadrons are reconstructed well. Some "fragment"s or "satellite"s remain unassociated.

Cluster Matching and Merging

- Stage 1: one-to-one gen-reco matching based on distances (3D or angular)
 - \rightarrow unassociated clusters ("satellites")
- Stage 2: attach satellites to reco clusters based on angular distances: possible cuts on angular separation, satellite energies, number of hits,...

-> improve results with directed tree on satellite clusters?

Cluster-based PFAs

Cluster Association Algorithm with MST

- M. Charles, U. Mallik, N. Meyer U of Iowa

General approach

- Need to separate and identify hadronic clusters.
- Hadronic clusters have substructure (unlike typical EM clusters)
- Approach is to break down MST clusters into pieces, check whether they should really be linked, then reassemble them.
- Parts of the skeleton:
 - Clumps -- dense collections of hits
 - Track segments
- ... plus halo/fragments/satellites

List of likelihood variables

- Clump-Clump:
 - DOCA
 - Smallest distance from a hit in one cluster to a hit in the other
- Track-Clump:
 - DOCA
 - Smallest distance from a hit in one cluster to a hit in the other
- Track-Track:
 - DOCA
 - Smallest distance from track hit to POCA
 - Whether POCA is inside calorimeter
 - Extrapolating track to POCA (or joint CoE for parallel & disjoint tracks)...
 - # Layers where a hit is not found
 - Fraction of layers where a hit is not found (ignoring layers with a hit from cluster itself)

Structual algorithm package

• Package "structural" contains drivers to:

- Find clumps & track segments in calorimeter
- Extrapolate charged MC particles to the ECAL (derived from Steve McGill's code)
- Obtain likelihood PDFs for linking components
- Use likelihood selector to link components
- Break up & reassemble clusters
- Identify fragments & assign them to clusters (crude)
- Report total event energy
- ... and a driver to tie it all together (ExamplePFA)

Likelihood distributions

Results

6

- ... are not ready yet.
- I'm at the stage where I can plot the total raw energy in Z-pole events and trust that:

Promising approach to separate charged and neutral showers AFTER photons are found and track mip segments are discarded

- -> part of full PFA
- -> available in cvs

Cluster-based PFAs

Cluster Association Algorithm with Hit Density-driven Clusterer – L. Xia ANL

- What's in it
 - Calibration of calorimeter
 - including Ron's angular correction
 - Clustering algorithm
 - hit density driven
 - Track-cluster matching
 - based on track-cluster distance, no E/p check
 - Charge fragment cleanup: hew!
 - After track-cluster matching
 - use geometrical variables to distinguish and remove charge fragments from real neutral clusters
- What's still needed (currently using MC information)
 - 'cluster ID'
 - Tells me whether a cluster is from an EM or a HAD shower
 - Track finding algorithm
 - Jet algorithm
- Detector mode
 - SiDaug05_np
 - Si tracker, Si/W EM calorimeter, RPC/SS DHCAL non-projective

Cluster Distance to Track

Cluster Distance to Neutral

associate clusters with tracks, neutrals

700

Using cuts on Distance to Neutral variable

Cuts:

- 1. For Nhits = 1, cluster-neutral distance > 1000mm
- 2. For 1<Nhits<=5, 1200mm
- 3. For 5<Nhits<=10, 1400mm
- 4. For 10<Nhits<=15, 1600mm
- 5. For 15 < Nhits < = 20, no cut
- 6. For Nhits>20, no cut

Neutral:

Any cluster with Nhits > max (10, Nhits, current)

Similar results using ratio variable

Results using both distance and ratio

Multiple-algorithm PFA

Track-first algorithm with optimized hit clustering and modular analysis

- S. Kuhlmann, S. Magill ANL
- R. Cassell, N. Graf SLAC
- C. Hensel, E. Benavidez, G. Wilson, Kansas

Full event reconstruction with PFA

e+e- -> Z -> qqbar event

Calorimeters : ECAL - W/Si HCAL - W/Scintillator

Top, CW

66 MeV γ 6 GeV π-5 GeV π-131 MeV γ 12 GeV γ 12 GeV KL⁰ 5 GeV π+ 2 GeV n 400 MeV γ 2 GeV π+ 40 MeV γ

Shower reconstruction by track extrapolation

Mip reconstruction : Extrapolate track through CAL layer-by-layer Search for "Interaction Layer" -> Clean region for photons (ECAL) -> "special" mip clusters matched to tracks

Shower reconstruction : Cluster hits using nearestneighbor algorithm Optimize matching, iterating in E,HCAL separately (E/p test)

Shower clusters

Nearest-Neighbor Clustering for Charged/Neutral Separation - SLAC/ANL

1. Mips on Track extrapolation

2. Photons

3. Track/mip matches to EM, HAD showers

4. Neutral Showers

Resulting contribution from confusion term : sqrt(3.67**2-2.65**2-2.05**2) = 1.5 GeV -> smaller than algorithm contributions

Detector Comparisons with PFAs

Vary B-field

SiD SS/RPC - 5 T field

SiD SS/RPC - 4 T field

-> Somewhat worse performance in smaller field

Detector Comparisons with PFAs

Vary CAL inner radius

CDC W/Scin - CAL IR ~ 125 cm

CDC W/Scin - CAL IR ~ 150 cm

-> better performance at larger R (more events in central peak)

PFA Building Blocks

SLAC SLIC package is ideally suited for PFA development and detector optimization

- -> Physics process and single particle generation
- -> Compact description of detector geometries
- -> Analysis package including event display

Tools for detector characterization, comparison analyses, etc.

- -> sampling fractions for calorimeters
- -> angular corrections to sfs
- -> cluster algorithm comparison code
- -> perfect PFA calculators
- -> track extrapolation codes

-> DigiSim package - detector response, thresholds, timing, noise, etc.

PFA Building Blocks (cont.)

Cluster Algorithms :

- -> Fixed Cone
- -> Nearest-Neighbor (proj and non-proj)
- -> Cheater
- -> Minimal Spanning Tree
- -> Density-Weighted (2 varieties)
- -> Directed Tree
- -> others?

Usefullness measures :

- -> org.lcsim + LCIO
- -> comparison to other cluster algorithms (compatible with cluster comparison code?)
- -> fits into PFA template (later)?
- -> documented studies of performances

PFA Building Blocks (cont.)

Analysis Algorithms :

- -> Mip Finders (several varieties)
- -> H-Matrix
- -> Cluster IDs (several varieties including Neural Net)
- -> Track/CAL object association
- -> Distance-based analyses

Usefullness measures :

- -> org.lcsim + LCIO
- -> comparison to other algorithms where applicable
- -> fits into PFA template (later)?
- -> documented studies of performances

Optimized PFA using PFA Template

Analysis Algorithms Simulated EMCAL, HCAL Hits Cluster Algorithms DigiSim (NIU) X-talk, Thresholds, Timing, etc. Reco. Particles EMCAL, HCAL HitMaps Track-Mip Match Algorithm (ANL) Modified EMCAL, HCAL HitMaps MST Cluster Algorithm (Iowa) H-Matrix algorithm (SLAC, Kansas) -> Photons Modified EMCAL, HCAL HitMaps Nearest-Neighbor Cluster Algorithm (SLAC, NIU) Track-Shower Match Algorithm (ANL) -> Charged Hadrons Modified EMCAL, HCAL HitMaps Density-weighted Cluster Algorithm (NIU, ANL) Neutral ID Algorithm (SLAC) -> Neutral hadrons Modified EMCAL, HCAL HitMaps

Hit Maps

Tracks, Photons, Neutrals to jet algorithm

Summary

In their present state, PFAs can be : Made modular to incorporate multiple cluster/analysis algorithms Used to optimize detector models Tuned to optimize detector performance

At this workshop:
1) Agree on standard PFA template in JAS3 analysis

> release template to CVS
> provides shell for PFA development/construction

2) Adapt existing software to standard template

> Nearest-Neighbor clusterer only one so far?
> modify others here?

3) Document existing tools and algorithms that can be used in this form for analysis